
Masters thesis
Christian Kjær Larsen — c.kjaer@di.ku.dk

Declarative Contracts
Mechanized semantics and analysis

Supervisors: Fritz Henglein and Agata Murawska

September 2nd, 2019

U N I V E R S I T Y O F C O P E N H A G E N
F A C U L T Y O F S C I E N C E

Abstract

In this thesis we explore formal verification of a contract specification language
(CSL) for general purpose business contracts. For this we use the Coq proof assistant.
CSL is a declarative language that specifies a valid set of event sequences satisfying
a contract. Properties of contracts can be proved using the formal semantics of CSL,
but with the help of a proof assistant we can gain confidence that our proofs are
actually true.

The three main contributions of this thesis are the following:
First, we mechanize 4 different semantics of CSL in Coq. A big step semantics,

a denotational semantics and two different reduction semantics. We then prove
a selection of meta-theorems relating them in different ways. This mechanization
helped us find mistakes in the original operational semantics for CSL.

Second, we design an abstract interpretation framework for CSL. This frame-
work is designed to infer properties of traces that satisfy a given contract. We then
use this framework to define two concrete analyses. Participation analysis will give
an approximation of the participating agents and how they transfer resources in a
contract. Fairness analysis will approximate the gains and losses different agents
have by participating in a contract. The analysis framework is proven sound with
respect to the formal semantics of CSL. The analysis framework can be instanti-
ated by proving abstract domains for the analysis and a few combinators. If the
combinators have certain properties, then the analysis is sound.

Finally, we mechanize the abstract interpretation framework in Coq and mecha-
nize its soundness proof. We also mechanize some abstract domains and use them
to mechanize both participation analysis and fairness analysis and thereby prove
their soundness with respect to the semantics of CSL.

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 3
1.3 Roadmap . 3

2 A Compositional Contract Language 5
2.1 Syntax . 5
2.2 Typing . 7
2.3 Contract satisfaction . 7
2.4 Denotational semantics . 10
2.5 Reduction semantics . 10
2.6 Resources and agents . 16

3 Proofs and programs 18
3.1 Propositions as types . 18
3.2 The Coq proof assistant . 19
3.3 An interval abstraction . 20

4 Mechanization of CSL in Coq 26
4.1 Bindings . 26
4.2 Expressions . 27
4.3 Syntax . 28
4.4 Contract satisfaction . 29
4.5 Denotational semantics . 29
4.6 Substitution . 32
4.7 Residuation . 33

5 Abstract interpretation 37
5.1 Collecting semantics . 37
5.2 Galois connections . 38
5.3 Fixed point algorithms . 39

6 Contract analysis 41
6.1 Abstract interpretation of CSL . 42
6.2 Analysis of expressions . 43
6.3 A collecting semantics for CSL . 46
6.4 An abstract interpreter . 56
6.5 A general framework for contract analyses 57
6.6 Participation analysis . 58

iii

CONTENTS

6.7 Fairness analysis . 59

7 Contract analyses in Coq 64
7.1 Generic analysis . 64
7.2 Analysis instances . 66

8 Discussion 71
8.1 Conclusion . 71
8.2 Related work . 72
8.3 Future work . 75

Bibliography 76

A Overview of the source code 80
A.1 The basic mechanization . 80
A.2 Verification of the analysis . 81
A.3 Prototype implementation . 82

B Additional background 83
B.1 Lattices . 83
B.2 Lattices in Coq . 85

iv

Chapter 1

Introduction

In this chapter we will motivate the thesis, and we will give an overview of the contri-
butions and the structure.

1.1 Motivation

In recent years there has been much interest in distributed ledger technologies (DLT)
where blockchain is the most popular type. Many DLTs support smart contracts which
are computer protocols that facilitate, verify or enforce contracts.

The most popular smart contract platform at the moment is Ethereum. Its smart
contracts run on the Ethereum Virtual Machine (EVM). Ethereum contracts, and many
other smart contracts, are written in imperative or object oriented languages that are
then compiled to low level virtual machines. Ethereum contracts have had a lot of
security issues, one famous example being the DAO hack where hackers stole around
50 million dollars from a single smart contract.

Current research [Bha+16] suggests that both the openness of Ethereum contracts
and their intricate semantics makes writing correct and secure contracts very difficult. It
is possible for an attacker to carefully analyze the contract source code (it is publicly
available on the blockchain network) and make a sophisticated attack. Furthermore
contracts are difficult to patch, since there is no way to update the code of a contract
once it is deployed.

Another approach to smart contracts is the Contract Specification Language (CSL)
currently under development by Deon Digital1, which is based on early work by
Andersen, Elsborg, Henglein, Simonsen and Stefansen [And+06].

CSL

CSL is a process-calculus inspired domain-specific language for writing business con-
tracts. Where Ethereum contracts are essentially Turing-complete programs that are
very hard to predict the behaviour of, CSL contracts are specifications. They describe se-
quences of events that are matched by a contract. The strategies of parties can, contrary
to Ethereum contracts, be kept private and can not be analyzed by possible attackers.
This is true to what the purpose of a traditional contract is. It specifies the rules that gov-
ern legal behaviors among consenting parties, not force how they act. For an overview

1https://docs.deondigital.com/latest/

1

https://docs.deondigital.com/latest/

CHAPTER 1. INTRODUCTION

of formal contract modelling approaches, Hvitved [Hvi10] provides a comprehensive
survey.

One semantics of CSL is given by a relation δ `D s : c, which states that the trace
(sequence of events) s satisfies contract c in the environment δ. As an example we can
write a simplified loan contract with 12 recurring payments in CSL as follows:

letrec repay[amount, payments] =
Transfer("alice", "bob", amount, _ | payments = 1).Success

+ Transfer("alice", "bob", amount, _ | payments > 1).repay(amount, payments - 1)
in Transfer("bob", "alice", 12000 EUR, _).repay(1000 EUR, 12)

The Transfer is at the core of CSL. Every syntactic occurence of a Transfer represents
a commitment to transfer a resource before finishing the remaining contract. The +
represents a choice between two subcontracts.

A satisfying trace for the loan contract contract will look like

〈transfer(bob, alice, 12000 EUR, t0), transfer(alice, bob, 1000 EUR, t1), . . . ,

transfer(alice, bob, 1000 EUR, t12)〉.

Where Bob first transfers 12000 euros to Alice, and then Alice makes 12 repayments of
1000 euros to Bob.

In this thesis we mechanize the semantics of CSL in Coq. This mechanized semantics
can be used to prove interesting properties about CSL. For instance we can prove that the
contract (c; c1) + (c; c2) is equivalent to c; (c1 + c2). First we define contract equivalence
in Coq using our mechanized contract satisfaction relation:

Definition contract_equiv Γ ∆ (c c’ : contract Γ ∆) :=
∀ (D : template_env Γ) (δ : env ∆) (s : trace),
csat δ D s c ↔ csat δ D s c’.

contract_equiv c c’ encodes that c and c’ has the same satisfying traces. Now we prove
that

Lemma seq_plus : ∀ Γ ∆ (c c1 c2 : contract Γ ∆),
contract_equiv ((c ;; c1) :+: (c ;; c2)) (c ;; (c1 :+: c2)).

There are more semantics of CSL that we mechanize in this thesis, and we will prove
much more interesting properties about them than this example.

Contract analysis

One claim in the original paper by Andersen et al. was that their contract specification
language was in some way analyzable. In the paper they go on to define two very
simple analyses that are basically syntax directed. They also explain that their analyses
are correct but that they do not work for all contracts. For a contract language it would
be very beneficial to have analysis methods that can be used both when developing new
contracts and when monitoring the performance of deployed contracts.

In this thesis we develop a sound general analysis method that can infer properties
of satisfying traces for contracts. If we can describe a property of a trace with a function
β : Tr → L to some set L of properties, and if β has some some special properties,
then we can in general find some ` that is a sound over-approximation for β(s) for all s
satisfying the contract.

For instance we develop participation analysis where we can infer what parties
transfer resources between each other in the contract. For the loan contract we can infer

2

CHAPTER 1. INTRODUCTION

a rather trivial property, namely that only Bob and Alice communicate. We also develop
fairness analysis which bounds the gains and losses by participating in a contract. For
the loan contract we can infer that neither Bob or Alice gains anything from participating
in the contract. In a satisfying trace, Bob pays 12000 euros, but also receives them again.

When developing analyses, their correctness is crucial. If the result of the analyses
are relied on then one should really trust that they are correct. For this, proof verification
is important. We also verify the soundness of the analysis methods with respect to the
mechanized semantics of CSL.

To summarize, the goal of this thesis is to build a theoretical framework necessary
for the formal analysis of digital contracts. We plan to do the following:

1. Mechanize the formal semantics of CSL using a proof assistant.

2. Build a theoretical framework for formal analysis of CSL.

3. Use the mechanized semantics of CSL to verify the correctness of the analysis
method.

1.2 Contributions

The main novel contributions of this thesis are the following:

• A mechanization of the syntax and semantics of CSL in Coq. We have also
mechanized a number of proofs about the meta-theory of CSL. The mechanization
was developed in collaboration with Murawska.

• A general approach to static analysis of CSL by means of abstract interpretation.
This is done by deriving a collecting semantics from the natural semantics of CSL
and then abstracting it using the concept of Galois connections. We have also
developed some concrete analyses that have some practical interest.

• Mechanization of parts of the static analyses in Coq which includes the mecha-
nization of a number of abstract domains and the definition of a generic analysis
using type classes.

1.3 Roadmap

• In Chapter 2 we introduce the Contract Specification Language (CSL), give the
formal semantics and describe a resource model that will be useful for the analysis.

• In Chapter 3 we give a short introduction to proofs as programs and how we can
use the Coq proof assistant for mechanization of programming language theory.

• In Chapter 4 we describe our Coq mechanization of CSL and show the most
important theorems that we have mechanized.

• In Chapter 5 we introduce the general idea of abstract interpretation.

• In Chapter 6 we develop an approach for static analysis of CSL by means of an
abstract collecting semantics and use it to specify 2 concrete static analyses and
prove their correctness. We also show how to implement an abstract interpreter
for CSL using abstract semantics trees.

3

CHAPTER 1. INTRODUCTION

• In Chapter 7 we show how we mechanized the analyses and proved their correct-
ness in Coq.

• In Chapter 8 we evaluate our work, look at related work and touch upon future
work.

4

Chapter 2

A Compositional Contract Language

In this section we will describe a compositional contract language for writing general
multi-party contracts [And+06]. Except for the last section on agent and resource models,
this chapter does not contain any contributions and is just meant to give an overview of
CSL though some definitions will differ a bit from the original paper.

The contract specification language (CSL) is based on Peyton-Jones and Eber’s
compositional specification for financial contracts [Jon01] but generalized to work for
multiple parties and not only for financial contracts involving currencies.

The language is inspired by the Resources-Events-Agents (REA) ontology by Mc-
Carthy [McC82] who describe an accounting model based only on the fact that events
happen where scarce resources are transferred between agents, created, transformed or
consumed.

At the heart of the REA model is an exchange where a resource changes ownership
from one agent to another. This is modeled in CSL by the transfer(a1, a2, r, t) event
where a1 sends resource r to a2 at time t. Creation, transformation and consummation
is not modeled by CSL. This event model is different from the the model in the language
described by Peyton-Jones and Ebers in the sense that they only specify financial
contracts where the agents are implicit and the scarce resources are currencies.

The language is built on top of a domain of agents A, resources R and times T to
model the transfer of resources. Agents are the entities transferring resources. It could
be entities like persons, companies, cryptographic keys in a blockchain system and so
on. Resources could be, say, currencies or physical assets. Times could be represented as
times with time zones (think ISO time) or as a time difference since some epoch (think
UNIX time).

We start by describing the syntax of CSL and describing the constructs of the lan-
guage.

2.1 Syntax

The entire syntax is shown in Figure 2.1. c is the syntax of contracts, td is the syntax of a
single template declaration and cd is the syntax for a contract specification with a set of
mutually recursive contract templates. We describe the syntax constructors for c.

• Success and Failure are the basic contracts. They represent the successful and the
breached contract respectively.

5

CHAPTER 2. A COMPOSITIONAL CONTRACT LANGUAGE

c ::= Success (The completed contract)
| Failure (The breached contract)
| Transfer(A1, A2, R, T |P).c (Commitment to transfer)
| c1 + c2 (Alternatively)
| c1 ‖ c2 (Concurrently)
| c1 ; c2 (Sequentially)
| f(a1, . . . , an) (Template application)

td ::= f [x1, . . . , xn] = c (Template declaration)
cd ::= letrec td1 . . . tdn in c (Top level contract declaration)

Figure 2.1: The core CSL syntax

• Transfer(A1, A2, R, T |P).c represents the contract that to be successful commits
to a transfer event to occur before requiring c to be successful. A1, A2, R and T are
variables where A1 represents the sender and A2 the receiver of the event. R is
the resource transferred in the event and T is the time the event occurred. P is
a predicate where the variables are bound and if the predicate is true, the event
is matched. The variables are bound in c as well. This constructor is the basic
building block of contracts and is the only place transfers are represented. We will
introduce syntactic sugar for when we are matching literals. For a1, a2 ∈ A, r ∈ R
we let Transfer(a1, a2, r, T |P).c abbreviate

Transfer(A1, A2, R, T |A1 = a1 ∧A2 = a2 ∧R = r ∧ P).c,

where A1, A2 and R are fresh.

• c1 + c2 composes c1 and c2 by making a choice possible. For the contract to be
successful, exactly one of c1 and c2 should be successful.

• c1 ‖ c2 composes c1 and c2 and is successful if c1 and c2 are both successful but
both can accept events concurrently. This can be used to specify independent
contracts.

• c1; c2 composes c1 and c2 and is successful if both subcontracts are successful and
c1 happens entirely before c2. This can be used to specify contracts where it is
important that one contracts is successful before another one happens.

• f(a1, . . . , an) is the application of a contract template. Where f is the name of the
template. It is successful if the body of the template is successful with the formal
parameters bound to their values. a1, . . . , an are expressions from an expression
language that we will describe later. The contract templates are mutually recursive,
which allows recurring contracts to be specified.

Note that we did not specify the syntax of expressions to be used in predicates and
arguments to templates. Later in this thesis we will discuss what consequences the
design of the expression language has on the expressibility and analyzability of the
contracts.

We will assume that for the expression language P with expressions e that there
exists valid typing judgments ∆ ` e : τ , where τ ∈ {Agent,Resource,Time,Boolean},

6

CHAPTER 2. A COMPOSITIONAL CONTRACT LANGUAGE

and a denotation Q[[e]]δ that maps expressions to values of type τ given that ∆ ` e : τ

and δ agrees with ∆. We write δ |= P to denote that Q[[P]]δ = true and δ 6|= P to denote
that Q[[P]]δ = false.

2.2 Typing

To define typing rules for CSL, we start by defining two different typing contexts. ∆
maps variables to types and Γ maps template names to typing signatures, in this case
represented by ∆.

∆ ::= [x1 7→ τ1, . . . , xn 7→ τn]

Γ ::= [f1 7→ ∆1, . . . , fn 7→ ∆n]

We let ∆[x 7→ τ] denote removing all occurrences of x from the list ∆, and adding x 7→ τ
at the and. We let ∆[x1 7→ τ1, . . . , xn 7→ τn] abbreviate ∆[x1 7→ τ1] · · · [xn 7→ τn]. We let
Γ(f) denote finding the last occurrence of f 7→ ∆ in Γ and returning ∆. The typing
rules of CSL can be seen in Figure 2.2.

The typing rules for CSL are pretty simple, and most of the work is used on making
sure that the contract templates are well-typed and that variables of the correct type are
bound in the Transfer along with requiring that the predicate evaluates to a boolean.

2.3 Contract satisfaction

Now it is time to describe what a contract actually means. In this section we give a
big-step semantics for contract satisfaction. It characterizes the satisfying traces of a
contract specification.

We mentioned events as part of the REA ontology, so they are surely going to be
important in the semantics. We only allow one kind of event which is the transfer of a
resource between two agents. For a1, a2 ∈ A, r ∈ R and t ∈ T we describe the transfer
event by the following syntax:

e ::= transfer(a1, a2, r, t)

where transfer(a1, a2, r, t) represents a transfer of resource r at time t from a1 to a2. An
event trace is a finite sequence Tr = e∗ of events such that the timestamps occur in
non-decreasing order. We write 〈〉 for the empty trace, 〈e1, . . . , en〉 for a sequence of
events.

We define an environment of contract templates D as a mapping from template
names to their template declarations. We define environment of values δ as a list of
mappings from variables to values.

D ::= [f1 7→ td1, . . . , fn 7→ tdn] (2.1)
δ ::= [x1 7→ v1, . . . , xn 7→ vn] (2.2)

We define environment look-ups and updates in a similar fashion for D and δ as we did
for typing environments in the previous section. To construct D For a set of template
declarations t1, . . . , tn we write

td1, . . . , tdnX[f1 7→ td1, . . . fn 7→ tdn]

7

CHAPTER 2. A COMPOSITIONAL CONTRACT LANGUAGE

∆,Γ ` c Contract c is well typed in ∆ with template typings Γ

T-Success
∆,Γ ` Success

T-Failure
∆,Γ ` Failure

T-TemplateApp
∀i ∈ {1, . . . , n} : ∆ ` ai : τi

∆,Γ ` f(a1, . . . , an)
(Γ(f) = [x1 7→ τ1, . . . , xn 7→ τn])

T-Transfer

∆′ = ∆[A1 7→ Agent, A2 7→ Agent, R 7→ Agent, T 7→ Time]
∆′ ` P : Boolean ∆′,Γ ` c

∆,Γ ` Transfer(A1, A2, R, T |P).c

T-Alternative
∆,Γ ` c1 ∆,Γ ` c2

∆,Γ ` c1 + c2
T-Concurrent

∆,Γ ` c1 ∆,Γ ` c2

∆,Γ ` c1 ‖ c2

T-Sequence
∆,Γ ` c1 ∆,Γ ` c2

∆,Γ ` c1 ; c2

Γ ` td Template declaration td is well typed in Γ

T-Decl
[x1 7→ τ1, . . . , xn 7→ τn],Γ ` c

Γ ` f [x1, . . . , xn] = c
(Γ(f) = [τ1, . . . , τn])

Γ ` cd Top level declaration cd is well typed in Γ

T-Letrec
[],Γ ` c ∀i ∈ 1, . . . , n : Γ ` ti

Γ ` letrec t1 . . . tn in c

Figure 2.2: Typing rules for contracts

if tdi = fi[x1, . . . , xm] = ci for all i ∈ 1 . . . n. This definition simply constructs the
template environment by destructing the template declarations and binding the names
of the templates to the declarations.

The judgments for contract satisfaction can be seen on Figure 2.3. In contrast to
[And+06] we do not include the global environment. This is for easier formalization
and to make the analyses easier to state. They will be trivial to add but will only make
the definitions more complex. We describe the rules for contract satisfaction:

S-Success Only the empty trace satisfies the successful contract, since the successful
contract has no more obligations.

S-Transfer The contract that commits to a transfer is satisfied if we have some event at
the head of the the trace and the predicate evaluates to true with the values in the
event bound and if the subcontract is satisfied with the tail of the event trace.

S-AltLeft, S-AltRight c1 + c2 is satisfied if either c1 or c2 is satisfied with the event
trace.

8

CHAPTER 2. A COMPOSITIONAL CONTRACT LANGUAGE

δ `D s : c s is a satisfying trace for c in δ with templates D.

S-Success
δ `D 〈〉 : Success

S-Template

∀i ∈ {1, . . . , n} : vi = Q[[ai]]
δ

[x1 7→ v1, . . . xn 7→ vn] `D s : c

δ `D s : f(a1, . . . , an)
(D(f) = (f [x1, . . . , xn] = c))

S-Transfer

δ′ = δ[A1 7→ a1, A2 7→ a2, R 7→ r, T 7→ t]
δ′ `D s : c δ |= P

δ `D transfer(a1, a2, r, t)s : Transfer(A1, A2, R, T |P).c

S-AltLeft
δ `D s : c1

δ `D s : c1 + c2

S-AltRight
δ `D s : c2

δ `D s : c1 + c2

S-Concurrent
δ `D s1 : c1 δ `D s2 : c2 (s1, s2) s

δ `D s : c1 ‖ c2

S-Sequence
δ `D s1 : c1 δ `D s2 : c2 s1 ++ s2 = s

δ `D s : c1; c2

s : td s is a satisfying trace for the top level contract specification td.

S-Letrec
t1, . . . , tnXD [] `D s : c

s : letrec t1, . . . , tn in c

Figure 2.3: Rules for contract satisfaction

S-Concurrent c1 ‖ c2 is satisfied for s if there is an interleaving (written (s1, s2) s)
such that s1 satisfies c1 and s1 satisfies c2.

S-Sequence c1; c2 is satisfied for s if we can split the event trace s into s1 s2 such that s1

satisfies c1 and s2 satisfies c2. We write this as an appending s1 ++ s2 = s.

S-Template A template application is satisfied if the trace satisfies the body of the
template with the formal parameters bound to their value when evaluated.

S-Letrec For a top level contract specification we construct the template environment
D and we then require that the contract c is satisfied with the templates in the
empty environment.

Note that there are no rules for Failure, since a breached contract cannot be satisfied.

9

CHAPTER 2. A COMPOSITIONAL CONTRACT LANGUAGE

2.4 Denotational semantics

We are not going to explain the denotational semantics of CSL in detail, so an interested
reader can read more in [And+06]. The main idea of the denotational semantics is
that contracts are denoted by trace sets S ∈ P(Tr) by a denotation function C. We
specify this informally here as a function mapping contracts to semantic functions from
denotations of template environments and environment to sets of traces:

C : Contract→ (Dom(D)→ Dom(∆)→ P(Tr))

And contract templates are denoted by a function mapping template environments to
meanings of their bodies.

D : D → (TName→ Dom(∆)→ P(Tr))

We write C[[c]]D[[D]];δ : P(Tr) for the denotation of a contract c in an environment δ with
denoted templates D. We can prove that the denotation of a contract coincides with all
the derivable trace satisfactions.

Theorem 2.1. C[[c]]D[[D]];δ = {s | δ `D s : c}

2.5 Reduction semantics

Now we want to go from just checking that a trace satisfies a contract to an operational
semantics, where we can monitor contract execution in time as events occur. We will
not go into depth, and a more detailed explanation can be found in [And+06].

Conceptually we can do the following to monitor a contract:

• Compute the set of all satisfying traces for a contract S0. If S0 = ∅, output that the
contract is breached.

• For events en ∈ {e1, e2, . . .} do

– Compute Sn = {s | e s ∈ Sn−1}
– If Sn = ∅ output that the contract is breached.

– If at any time we want to conclude the contract, we just check whether
〈〉 ∈ Sn, and we can stop contract monitoring.

But we cannot simply compute the set of all satisfying traces of a contract. To work
around this we now conceptually extend the language with a residuation operator e\c
to mean the residual contract of c given the event e. The traces that satisfy this residual
contract are the following in an environment δ and with templates D:

δ `D e s : c

δ `D s : e\c

We can use this insight to define equality of a residual contract

Definition 2.1 (Residuation equality). To denote equality of residuation we write D ` c′ =
e\c to mean that

∀s, δ.δ `D e s : c′ ⇐⇒ δ `D s : c.

10

CHAPTER 2. A COMPOSITIONAL CONTRACT LANGUAGE

D ` c nullable

D ` Success nullable
D ` c nullable

D ` c+ c′ nullable
D ` c′ nullable

D ` c+ c′ nullable

D ` c nullable D ` c′ nullable
D ` c ‖ c′ nullable

D ` c nullable D ` c′ nullable
D ` c; c′ nullable

D ` c nullable
D ` f(a1, . . . , an) nullable

D(f) = (f [x1, . . . , xn] = c)

Figure 2.4: Syntactic nullability

We also need to state that a contract has at least the behavior of another contract

Definition 2.2 (Contract subset). To denote that a contract has at least the satisfying traces
of another one we write D ` c′ ⊆ c to mean that

∀s, δ.δ `D s : c′ ⇒ δ `D s : c.

We also characterize that a contract has at least the behavior of a residual contract.

Definition 2.3 (Residuation subset). We write D ` c′ ⊆ e\c to mean that

∀s, δ.δ `D e s : c′ ⇒ δ `D s : c

The idea now is to define a reduction semantics that defines what the syntactic residual
contract after an event e is. To do this we now need a way to decide whether a contract
can be concluded successfully. We call this a nullable contract.

2.5.1 Nullability

We characterize semantic nullability by a relation D |= c nullable that is true if for all δ,
δ `D 〈〉 : c. This is differs from the paper, since the paper says the empty trace should
satisfy the contract in some environment, and then states that semantic nullability is
independent from the choice of δ. The only difference is in the case where the type of
environments is not inhabited for all typing environments, but we will not encounter
this case. We will prove in the mechanization that we can construct environments for
all typing environments.

We can also characterize nullability syntactically. This can be seen in Figure 2.4.
Success is nullable, and then for +, just one subcontract should be nullable. A Transfer
is of course not nullable, and for the rest of the combinators, all subcontracts should be
nullable.

We can prove that the two notions of nullability are equivalent.

Lemma 2.1. D ` c nullable⇐⇒ D |= c nullable

Proof. For⇒ by induction on the derivation of nullability for c. For⇐ by induction on
the trace satisfaction derivation for c.

11

CHAPTER 2. A COMPOSITIONAL CONTRACT LANGUAGE

D ` c guarded

D ` Success guarded D ` Failure guarded

D ` c guarded
D ` f(a1, . . . , an) guarded

D(f) = (f [x1, . . . , xn] = c)

D ` Transfer(A1, A2, R, T |P).c guarded

D ` c guarded D ` c′ guarded
D ` c+ c′ guarded

D ` c guarded D ` c′ guarded
D ` c ‖ c′ guarded

D ` c nullable D ` c guarded D ` c′ guarded
D ` c; c′ guarded

D 6` c nullable D ` c guarded
D ` c; c′ guarded

Figure 2.5: Syntactic guardedness

2.5.2 Guardedness

The goal of residuation is the reduce contracts given events. Unproductive contract
templates like

letrec f[] = g()
g[] = f() in f()

can be hard to reduce, since a residuation algorithm might loop. To make sure the
residuation is possible we require guardedness. Guardedness basically ensures that we
do not have contracts that are unproductive, which means that any template application
must be guarded by a Transfer. The rules for guardedness can be seen on Figure 2.5. We
also need guardedness for template environments.

Definition 2.4. We say that D = [f1 7→ f1[x1] = c1, . . . , fn 7→ fn[xn] = cn] is guarded if it
is the case for all ci ∈ {c1, . . . , cn} that D ` ci guarded.

It turns out that this is a sufficient condition to ensure that contracts are guarded.

Lemma 2.2. If D is guarded then for all c, D ` c guarded.

Proof. By induction on c.

2.5.3 Deterministic reduction by delayed matching

In the sketch for the contract monitoring algorithm we needed to compute Sn = {s | e s ∈
Sn−1} given an event e, but computing the initial set of satisfying traces for a contract is
hard. We therefore take a different approach. We do a syntactic reduction of a contract

12

CHAPTER 2. A COMPOSITIONAL CONTRACT LANGUAGE

D `D c
e−→ c′ c reduces deterministically to c′ by e.

D-Success
D `D Success e−→ Failure

D-Failure
D `D Failure e−→ Failure

D-TransferTrue
{A1 7→ a1, A2 7→ a2, R 7→ r, T 7→ t} |= P

D `D Transfer(A1, A2, R, T |P).c
transfer(a1,a2,r,t)−−−−−−−−−−→ c[a1/A1, a2/A2, r/R, t/T]

D-TransferFalse
{A1 7→ a1, A2 7→ a2, R 7→ r, T 7→ t} 6|= P

D `D Transfer(A1, A2, R, T |P).c
transfer(a1,a2,r,t)−−−−−−−−−−→ Failure

D-TApp

D `D c[v1/x1, . . . , vn/xn]
e−→ c′ D(f) = (f [x1, . . . , xn] = c)

∀i ∈ {1, . . . , n} : vi = Q[[a1]]∅

D `D f(a1, . . . , an)
e−→ c′

D-Alt
D `D c

e−→ d D `D c′
e−→ d′

D `D c+ c′
e−→ d+ d′

D-Con
D `D c

e−→ d D `D c′
e−→ d′

D `D c ‖ c′ e−→ c ‖ d′ + d ‖ c′

D-SeqNull
D ` c nullable D `D c

e−→ d D `D c′
e−→ d′

D `D c; c′
e−→ (d; c′) + d

D-SeqNotNull
D 6` c nullable D `D c

e−→ d

D `D c; c′
e−→ d; c′

Figure 2.6: Deterministic reduction

given an event. Instead of keeping track of a set of traces, we keep track of a residual
contract.

The first operational semantics that we will describe is the delayed matching seman-
tics. This semantics delays the commitments to events by committing to all possible
transfers in parallel.

The operational semantics rewrites a contract given an event e. It will be rewritings
on the form D `D c

e−→ c′ meaning that a contract c is rewritten to c′ given an event
e. In Figure 2.6 we have written the rules. The basic matching rule D-TransferTrue
matches a single commitment, but the problem is that it might be matched in multiple
subcontracts. To fix this we match the commitment in all subcontracts and then form a
syntactic alternative of the possible reductions.

The semantics is fully deterministic, but the consequence of using the rewrite rules
will be that we keep track of all possible reductions as a big explicit syntactic alternative.
We can then at the end check whether the contract has the behavior of Success and

13

CHAPTER 2. A COMPOSITIONAL CONTRACT LANGUAGE

therefore can be concluded. Note that we reduce closed contracts to closed contracts
since we always substitute in values for each Transfer.

We can show that this semantics implements residuation.

Theorem 2.2. For any c, c’, e and D: if D `D c
e−→ c′ then D ` e\c = c′

And that the residual contract is uniquely determined

Theorem 2.3. For all c and guarded D, there exists a unique c′ such that D `D c
e−→ c′ and

D ` c′ guarded.

2.5.4 Non-deterministic reduction by eager matching

The previous deterministic reduction semantics faithfully implements residuation, but
the residual contract is not entirely natural. In accounting it is customary to match
events eagerly, and choose the matching subcontract as events arrive. To reflect this in
the semantics, we change the deterministic semantics into a non-deterministic semantics
where alternatives are represented by rules at the meta-level. This semantics can be seen
in Figure 2.7. Meta-level choices are represented by a special reduction D `N c

τ−→ c′ that
does not correspond to an actual event, and is used to choose commitments eagerly. We
let λ range over both τ and actual events. For instance we have added the rule N-AltL to
choose to match the left alternative in a contract c+ c′. We have also added a transitivity
rule N-Trans to be able to make a sequence of τ -reductions along with an actual event
reduction to reduce say c+ Transfer(A1, A2, R, T |True).Success to Success given an
event e.

We can show that this non-deterministic reduction semantics is sound. That is if we
reduce on an event we remain sound, and if we do a τ -reduction we also remain sound.

Theorem 2.4. We show soundness for τ -reductions and actual event reductions separately.

1. If D `N c
e−→ c′ then D ` c′ ⊆ e\c.

2. If D `N c
τ−→ c′ then D ` c′ ⊆ c.

One single reduction is not complete, but if we take all the possible reductions for a
contract and put them in a big alternative, then we are complete. We state that with the
following theorem

Theorem 2.5. If D `D c
e−→ c′ then there exist contracts c1, . . . , cn for some n ≥ 1 such that

D `N c
e−→ ci for all i . . . n and D ` c′ ⊆ Σn

i=1ci.

2.5.5 Controlled reduction semantics

In [And+06] there is also a third operational semantics, which is also an eager matching
semantics, but instead of allowing arbitrary τ -reductions, events carry routing infor-
mation. The routing information denotes what commitment the event is meant to
match.

We will not go into detail about it here, since we are not mechanizing it in Coq. This
is because the original formulation in the paper is not complete with respect to the
non-deterministic reduction semantics. Not every reduction in the non-deterministic
reduction semantics can be mimicked by one in the controlled reduction semantics.

14

CHAPTER 2. A COMPOSITIONAL CONTRACT LANGUAGE

D `N c
e−→ c′ c reduces non-deterministically to c′ by e.

N-Success
D `N Success e−→ Failure

N-Failure
D `N Failure e−→ Failure

N-TransferTrue
{A1 7→ a1, A2 7→ a2, R 7→ r, T 7→ t} |= P

D `N Transfer(A1, A2, R, T |P).c
transfer(a1,a2,r,t)−−−−−−−−−−→ c[a1/A1, a2/A2, r/R, t/T]

N-TransferFalse
{A1 7→ a1, A2 7→ a2, R 7→ r, T 7→ t} 6|= P

D `N Transfer(A1, A2, R, T |P).c
transfer(a1,a2,r,t)−−−−−−−−−−→ Failure

N-TApp
D(f) = (f [x1, . . . , xn] = c) ∀i ∈ {1, . . . , n} : vi = Q[[ai]]∅

D `N f(a1, . . . , an)
τ−→ c[v1/x1, . . . , vn/xn]

N-AltL
D `N c+ c′

τ−→ c
N-AltR

D `N c+ c′
τ−→ c′

N-Con1
D `N c

λ−→ d

D `N c ‖ c′ λ−→ d ‖ c′
N-Con2

D `N c′
λ−→ d′

D `N c ‖ c′ λ−→ c ‖ d′

N-Con3
D `N Success ‖ c τ−→ c

N-Con4
D `N c ‖ Success τ−→ c

N-Seq1
D `N Success; c

τ−→ c
N-Seq2

D `N c
λ−→ d

D `N c; c′
λ−→ d; c′

N-Trans
D `N c

τ−→ c′ D `N c′
e−→ c′′

D `N c
e−→ c′′

Figure 2.7: Non-deterministic reduction

15

CHAPTER 2. A COMPOSITIONAL CONTRACT LANGUAGE

In particular if we can reduce D `N c
e−→ c′, then in the non-deterministic semantics

we can reduceD `N (c1+c2) ‖ c e−→ c1 ‖ c′. This is not possible to mimic in the controlled
semantics in the paper.

There is currently ongoing work by Murawska on developing a complete reduction
semantics with explicit control.

2.6 Resources and agents

When describing CSL we did not describe the base domains, we only required the
existence ofA,R and T . For the analysis of CSL we need to be more specific about agents
and resources. We will use the definitions about resources and agents in Section 6.6 and
Section 6.7 about participation and fairness analysis.

For agents the story is pretty simple. We only distinguish between two cases. Either
we have some (basically) countably infinite set of agents. It could be public keys in a
blockchain system or arbitrary user names (strings). This means that we do not have
access to the entire universe of possible agents for a transfer. The other case is that we
have a fixed set of agents for a particular contract. It could be all registered users in a
business application.

For resources the story is a bit more complex. We will now give an example of a
resource domain that will fit into the REA ontology. The definitions here are less formal
than what is done by Henglein et al. in the POETS paper [Hen+09], and we avoid
involving linear algebra.

We define a countable infinite set of resource types X

X = {DKK, iPhone,Vesterbrogade 142, st. th., . . .}

to denote scarce resources, they might be unique like in the case of “Vesterbrogade 142,
st. th”, or they might be fungible like “DKK” or “USD” and so on. We can now write
resourcesR as a finite map from resource types to real numbers denoting how much of
a certain resource type goes into a resource. Implicitly resources types not defined in
the finite map will map to 0.

R = X
fin−→ R

For easier notation we write a resource as a sum of scaled resource types, for instance
the resource consisting of 1.5 litres of milk and 15 iPhones can be written as:

r = 1.5 · litres of milk + 15 · iPhone.

We can define addition and subtraction pretty easily by just performing it element-wise.
We can also scale resources by a constant. We can describe ownership of resources O as
a finite mapping from agents to resources denoting which resources which agents own

O = A fin−→ R.

A transfer of resources is a change of ownership such that the amount of resources in
total is preserved.

T = A fin−→ R
For an event e = transfer(a1, a2, r, t), the associated transfer is

te =

{
{a1 7→ −r, a2 7→ r} if a1 6= a2

∅ otherwise

16

CHAPTER 2. A COMPOSITIONAL CONTRACT LANGUAGE

For more general transfers t′ ∈ T where multiple parties can be involved it must also be
the case that ∑

a∈A
t′(a) = 0

Which is trivially true for the simple two-way transfer.
We can also denote the effect of an entire trace with a function E : Tr → T that

computes the combined transfer for all the events.

E(〈e1, . . . , en〉) =
n∑
i=1

tei

Example 2.1. Consider the event trace

s = 〈transfer(a, b, 10 ·DKK, t1), transfer(b, a, 1 · litres of milk, t2)〉

The effect of the trace is

E(s) = {a 7→ 1 · litres of milk− 10 ·DKK, b 7→ 10 ·DKK− 1 · litres of milk}

We can check that the amount of resources is preserved, and we can convince ourselves that this
holds in general.

This concludes the description of CSL, and we will quickly introduce the background
needed for mechanization of CSL.

17

Chapter 3

Proofs and programs

In the last chapter we gave some background on CSL and defined the semantics and
some meta-theorems on paper. In this chapter we will give the background for using
programming languages with higher-order type systems for formalizing mathematics
and programming language theory. It will not be a complete introduction to type theory,
but will mainly give an intuition into how we can encode mathematical statements
using the Coq proof assistant. Readers that already have experience with Coq can skip
this section.

3.1 Propositions as types

The notion of propositions as types describes a correspondence between a constructive
logic and a programming language. The idea is that for each proposition A in the
logic, there is a corresponding type |A| in the programming language. Determining
provability of A corresponds to the checking that type |A| is inhabited (there exists a
program of the type |A|). Proving A corresponds to constructing a term t of type |A|.
Checking the proof of A corresponds to checking that t has type |A|.

In propositional logic we can informally describe the correspondence as a translation
from propositions to types in a functional language with simple types:

[[A⇒ B]] = [[A]]→ [[B]]

[[A ∧B]] = [[A]]× [[B]]

[[A ∨B]] = [[A]] + [[B]]

[[⊥]] = ∅

We write ¬A is an abbreviation for A⇒ ⊥ to complete the definition of propositional
logic. In the translation, + is the disjoint union defined as

P +Q = {(left, p) | p ∈ P} ∪ {(right, q) | q ∈ Q}.

∅ is an empty type that has no elements.
Now to prove a statement like A⇒ A ∨B, we have to construct a program with the

type |A| → |A|+ |B|. This could be the program λx : |A|.(left, x). Notice the similarity
between the lambda abstraction and the implication introduction rule in propositional
logic.

To extend the correspondence to predicate logic we have to give a translation for
quantifiers. Quantifiers bind variables in propositions, so in the propositions as types

18

CHAPTER 3. PROOFS AND PROGRAMS

interpretations we have to include binding structures in types. This gives rise to depen-
dent types where types depend on values. We introduce the Π-type to model universal
quantification and the Σ-type to model existential quantification in the propositions as
types interpretation. This was also the original motivation when Howard and De Bruijn
introduced dependent types in the 60’s [BD09].

Intuitively the universal quantifier ∀x ∈ X.A x joins a family of propositions based
on the set X , so we can view it as a big conjunction∧

x∈X
A x.

In dependent type theory we describe this type as the Π-type Πx : X.A x. This type will
allow us to describe a family of types indexed by a set X . In a program this might be
the set of n-tuples described with the Π-type

NTup = Πn : N.
n︷ ︸︸ ︷

N× · · · × N .

Now (42, 7, 9) is a member of the type NTup 3. The Π-type is essentially a type-level
function.

If we look at the propositions as types translation for the conjunction, then the big
conjunction can be though of as a big product, and elements of the type are members of
this product.

For the existential quantifier ∃x ∈ X.A x we can dually view it as a big disjunction∨
x∈X

A x

So for this we introduce the Σ-type Σx : X.A x. By the proposition as types translation,
we can look at this as a big disjoint union. So elements of this Π-type are tuples with the
first element choosing which element of x ∈ X we came from, and the second element
is a proof of A that depends on x. If we look at the statement ∃x ∈ N.x ≥ 10 then the
proposition as types interpretation is Σx : N.x ≥ 10. An element of this type is a tuple
(x, P x) where x is an element greater than 10, and P x is a proof that x is greater than
10.

Now we can complete the propositions as types interpretation for predicate logic:

[[∀x ∈ X.A x]] = Πx : |X|.[[A x]]

[[∃x ∈ X.A x]] = Σx : |X|.[[A x]]

We will now look at the proof assistant Coq, which is a practical implementation of a
dependently typing programming language where this view of propositions as types is
used for encoding propositions and proofs of them.

3.2 The Coq proof assistant

The Coq proof assistant is a piece of software that can verify proofs of mathematical
theorems. At its core is the language Gallina which is based on the higher-order type
theory, the Calculus of Inductive Constructions. By the proofs as programs interpre-
tation we can use it both for writing programs by viewing it at a typed programming
language and using it for doing constructive predicate logic.

19

CHAPTER 3. PROOFS AND PROGRAMS

On top of Gallina is a tactic language, Ltac, that lets us prove theorems interactively,
implement proof search and decision algorithms and much more. This is the feature
that makes Coq a good option for verifying large scale proofs about both mathematics
and software. A lot of the tedious work can be automated.

When we write Coq terms directly we write := after the type of the term and give
the term like this:

Definition important_def : type := implementation.

When we construct the term interactively using Ltac we give a sequence of proof steps:

Definition also_important_def : type.
tactic1. tactic2.

Defined.

To make it clear when we are writing proofs, we also can use keywords Lemma and
Theorem to make it clear that we are doing a proof and not constructing a program:

Theorem important_proof : proposition_we_need_to_prove.
Proof. tactic1.

tactic2. Qed.

And instead of the type, we write the proposition we want to prove. There are small
distinctions between proofs and programs in Coq, but we will not explore it in this
thesis, since we are interested in practical proof developments.

Now as a small tutorial to Coq, we describe the implementation of a library for
intervals. This example will show the use of Coq to formalize some mathematics that
later will be used in the context of an analysis of CSL. This will be a nice example of
the flexibility of the Coq system to combine both programming language logics and
more regular mathematics. For a brief introduction to Coq, a recommended reading
is the notes “Coq in a Hurry” by Bertot [Ber06]. A good complete textbook on Coq is
“Coq’Art” by Bertot and Casteran [BC04].

3.3 An interval abstraction

We define an interval on the integers as the following set:

IZ = {⊥} ∪ {[x1, x2] | x1 ≤ x2, x1 ∈ Z ∪ {−∞}, x2 ∈ Z ∪ {∞}}

We start by identifying the 5 different types of intervals. For a, b ∈ Z we have the
following statements about intervals:

1. The empty interval, i = ⊥ is an interval.

2. The interval that is bounded to the right i = [−∞, b] is a valid interval.

3. The interval that is bounded to the left i = [a,∞] is a valid interval.

4. The fully bounded interval i = [a, b] with a < b is a valid interval.

5. The entire number line i = [−∞,∞] is a valid interval

6. Nothing else is an interval.

20

CHAPTER 3. PROOFS AND PROGRAMS

We want to encode valid intervals, and we do that with an inductive datatype. All except
case 4 are easy to encode in Coq. They either take one or zero arguments and every way
to construct them results in a valid interval. In case 4 there are different strategies for
encoding that a < b. We choose to make the intervals well-typed by construction. For
this we can use the Σ-type in Coq. The final definition of valid intervals is:

Inductive interval : Set :=
| EmptyInterval : interval
| Interval : { ’ (x, y) | Z.le x y } → interval
| Below : Z → interval
| Above : Z → interval
| FullInterval : interval.

Here { ' (x, y) | Z.le x y } is the sigma type Σ(x, y) : Z2.x ≤ y, where members
are pairs of integers where the first coordinate is smaller than the second. This is
exactly what we need for a valid interval. The definitions for the inductive type are
parameterized by the type of their constructor. For instance EmptyInterval takes no
arguments and Interval takes a member of the subset type as an argument.

To construct a singleton interval we use the exist constructor that constructs an
element of a Σ-type. For the equality proof we already have a proof that x ≤ x in the
standard library:

Z.le_refl : ∀ n : Z, (n <= n)%Z

Here we see the proofs as programs interpretation in action. The program Z.le_refl
represents a proof that x ≤ x. We can also view it as function with a Π-type. In Coq we
write Π-types with the ∀ quantifier or with a named argument in the type. To construct
a singleton interval we do:

Definition singleton_interval (x : Z) : interval := Interval (exist _ (x, x) Z.le_refl x)).

There are multiple ways to implement this function. Consider another option:

Definition singleton_interval’ (x : Z) : interval :=
Interval (exist _ (x, x)
Z.ge_le x x (Z.le_ge x x (Z.le_refl x)).

Where the proof now rewrites to x ≥ x and back. We now try to prove that intervals
contructed with the two function are equal. We want this to be the case, since the
intervals are supposed to be equal by having equal bounds:

Example singleton_interval_correct : singleton_interval 0 = singleton_interval’ 0.
Proof. unfold singleton_interval, singleton_interval’.

f_equal. f_equal.
Admitted.

We cannot prove this, since we need to prove that

Z.le_refl 0 = Z.ge_le 0 0 (Z.le_ge 0 0 (Z.le_refl 0))

which they are not (they are different proof terms). We need some other notion of
equality of intervals. We want bounded intervals to be equal if the first coordinates of
the Σ-types are equal. We do this with the proj1_sig function that projects the witness
out of a Σ-type:

Definition eq_interval (a b : interval) : Prop :=
match a, b with
| Interval i1, Interval i2 ⇒ proj1_sig i1 = proj1_sig i2
| _, _ ⇒ a = b
end.

21

CHAPTER 3. PROOFS AND PROGRAMS

We define membership in intervals as you would expect, but again we have to project
out the bounds in the case of the fully bounded interval. Also inclusion is defined as an
implication, and not by comparing bounds:

Definition In_interval (z : Z) (i : interval) : Prop :=
match i with
| EmptyInterval ⇒ False
| Interval i’ ⇒ let (a, b) := proj1_sig i’ in (a <= z)%Z ∧ (z <= b)%Z
| Below b ⇒ Z.le z b
| Above a ⇒ Z.le a z
| FullInterval ⇒ True
end.

Definition Incl_interval (i1 i2 : interval) : Prop :=
∀ z, In_interval z i1 → In_interval z i2.

With both definitions we can prove that equality of intervals actually encodes equality
of intervals, namely that they have the same elements.

Lemma In_interval_eq : ∀ (i1 i2 : interval),
eq_interval i1 i2 → ∀ z, In_interval z i1 ↔ In_interval z i2.

The nice thing about the dependently typed intervals is that whenever we have a
function on intervals for instance join,

Definition join_interval (i1 i2 : interval) : interval.

Then we know that the output of this function is a valid interval with upper bounds
actually being upper bounds. We then explicitly prove that join has the properties that
we want. For instance that the empty interval is an identity element

Lemma join_interval_l_id : ∀ i, eq_interval (join_interval EmptyInterval i) i.

One crucial lemma we want to show is the monotonicity of join, i1 ⊆ i2 ∧ i3 ⊆ i4 ⇒
i1 ∪ i3 ⊆ i2 ∪ i4.

Lemma join_interval_monotone : ∀ i1 i2 i3 i4,
Incl_interval i1 i2 ∧ Incl_interval i3 i4 →
Incl_interval (join_interval i1 i3) (join_interval i2 i4).

To prove a statement like this we need a different characterization of interval inclusion
that relates inclusion to lower and upper bounds of intervals. For instance for two
bounded intervals, inclusion implies an order of the lower and upper bounds.

Lemma Incl_interval_bounds_ii : ∀ s1 s2,
Incl_interval (Interval s1) (Interval s2) →
(lb s2 <= lb s1 ∧ ub s1 <= ub s2)%Z.

We prove similar lemmas for open intervals. Proofs of lemmas like these require a lot of
reasoning about linear arithmetic. In Coq there is a tactic lia that decides a large part of
linear arithmetic, and it is very useful. We define a tactic that automatically proves a lot
of statements about intervals.

Ltac interval_killer :=
repeat match goal with

| [s : {’(_, _) : Z * Z | (_ <= _)%Z } |- _] ⇒ destruct s as [x ?]; destruct x as [? ?]
end; simpl in *; f_equal; auto; try lia.

The tactic basically destructs the bounded intervals and gives us all the inequality proofs.
It then tries to prove the goal automatically. For instance we could define a lemma that
states something about inclusion when adding a singleton interval:

22

CHAPTER 3. PROOFS AND PROGRAMS

Lemma In_interval_plus_singleton : ∀ z1 z2 i,
In_interval z1 (plus_interval (singleton_interval z2) i) ↔
In_interval (z1 - z2) i.

Proof.
destruct i; interval_killer.

Qed.

Which we now can prove with automation. This small example shows that Coq is also
a good choice for mechanizations of other things than just logics about programming
languages. The entire implementation can be found in CSL/Analysis/Interval.v.

We will also briefly introduce two features of Coq that are not so common in Coq
developments that we use in our development: Type classes and co-inductive types.

3.3.1 Type classes

Type classes in Coq are based on dependent records, which is a generalization of regular
records such that types of fields can depend on previous values defined in the record. It
is commonly used to structure, say, data types with proofs about them. For instance we
can package a natural number with a proof that it is bigger than 10 inside a dependent
record where the proof depends on the value.
Record Stuff : Type := mkStuff { thing : nat; proof : thing >= 10 }.

We can construct an element of Stuff for the natural number 10
Definition ten := mkStuff (le_refl 10).

By providing a proof that 10 >= 10, which is a proof from the standard library le_refl,
that we can instantiate with 10. Note that Coq makes thing implicit, since it can be
determined from proof.

Type classes share the syntax with dependent records both for class declarations and
instance specifications. As an example we can specify the class of injective functions
from A to B as the type class
Class Injective A B := {
f : A → B;
f_injective : ∀ a b, f a = f b → a = b

}.

Now we give the instances with the Instance keyword. We can compose type classes, and
derive instances from other instances. For instance we can derive that the composition
of two injective functions is injective.
Instance compInjective A B C ‘(Injective A B) ‘(Injective B C) : Injective A C :=
{
f a := f (f a)

}.
intros; apply f_injective; apply f_injective; auto.
Defined.

Note that if we do not specify the member in the record, we can give a proof script that
constructs the term after the fact. Also the inner f is from the parameter Injective A B

and the outer f is from the parameter Injective B C. We will use the type classes heavily
when defining generic analyses for CSL in a later section.

3.3.2 Co-inductive types

In the development we are also going to use co-inductive types which makes it possible
to define infinite objects and prove properties about them.

23

CHAPTER 3. PROOFS AND PROGRAMS

For inductive types, elements are obtained from finite applications of the construc-
tors in the definition. For co-inductive types, elements are obtained from both finite and
infinite applications of the constructors in the definition. This means that if we need
to have an infinite branching structure in sub-terms, then we have to use co-inductive
types.

We noted before that propositions can be seen as types, and proofs can be seen
as inhabitants of these types. Co-inductive types of sort Prop describe co-inductive
predicates, and proofs of these statements can be infinite proof terms. Constructing
these proofs in Coq is a little tricky, and not as widely supported as inductive proofs.

As an example of a co-inductive type we implement infinite trees:

CoInductive ltree (A : Set) : Set :=
| LLeaf : ltree A
| LBin : A → ltree A → ltree A → ltree A.

We can describe the tree that infinitely branches to the right with zeros on all nodes by
the co-recursive function:

CoFixpoint right_zero_tree : ltree nat := LBin 0 LLeaf right_zero_tree.

So trees can be finite or infinite, and some branches can be finite while other branches
are infinite.

One major difficulty with co-inductive types is that equality is inductively defined in
Coq, and therefore too strong to be used to reason about elements of co-inductive types.
Usually we then define another notion of equivalence, bi-similarity. The idea is for say,
infinite trees, that two trees are bi-similar if the root is equal, and all the sub-trees are
bi-similar. We describe this as a co-inductive predicate:

CoInductive ltree_bisim A : ltree A → ltree A → Prop :=
| LLeafBisim : ltree_bisim LLeaf LLeaf
| LBinBisim : ∀ a t1 t1’ t2 t2’,

ltree_bisim t1 t1’ → ltree_bisim t2 t2’ → ltree_bisim (LBin a t1 t2) (LBin a t1’ t2’).

So if we want to show that two transformations f g : ltree A → ltree A on the same tree
are bi-similar we show

Theorem fg_bisim A : ∀ (t : ltree A), ltree_bisim (f t) (g t).

For instance we can define the map function on infinite trees (similarly to how you
would define it for finite trees) that maps a function on each element:

CoFixpoint ltree_map (A B : Set) (f : A → B) (t : ltree A) : ltree B :=
match t with
| LLeaf ⇒ LLeaf
| LBin v t1 t2 ⇒ LBin (f v) (ltree_map f t1) (ltree_map f t2)
end.

The only restriction on writing co-recursive functions in Coq is that every co-recursive
call needs to be guarded by a constructor. In the previous function, calls to ltree_map

are guarded by LBin.
Now we want to prove that mapping with two functions composed together is

the same as mapping them individually. We cannot do it with equality, but with bi-
simulation we can say that no matter how we explore the tree, then the nodes will
always be similar.

Theorem ltree_map_comp_bisim : ∀ (A B C : Set) (f : B → C) (g : A → B) (t : ltree A),
ltree_bisim (ltree_map (f ◦ g) t) (ltree_map f (ltree_map g t)).

Proof.

24

CHAPTER 3. PROOFS AND PROGRAMS

intros A B C f g.
cofix H.
(* Proof steps here *)

Qed.

And for the proof by co-induction we also have the guardedness condition. All uses of
the co-inductive hypothesis

H : ∀ t : ltree A, ltree_bisim (ltree_map (f ◦ g) t) (ltree_map f (ltree_map g t))

has to be guarded by a constructor.
We will now describe the mechanization of CSL in Coq.

25

Chapter 4

Mechanization of CSL in Coq

In this chapter we will describe our mechanization of CSL. This includes the encoding of
the syntax and semantics, and all the meta-theorems from [And+06] except the control
semantics. We will use an intrinsic approach to mechanization which means that the
terms that we construct will be well-typed by construction and we will therefore have
no explicit typing rules. This encoding will rely heavily on the dependently typed
programming capabilities of the Coq proof assistant. An overview of the source code
can be found in Appendix A.

4.1 Bindings

When one has to mechanize any serious piece of programming language theory one has
to make a choice of how to represent binding structures. They are usually relatively easy
to work with on paper, but are notoriously hard to deal with in proof assistants [AZW09].

In this development we are going to use dependently typed De Bruijn indices as used
by Benton et al. [Ben+11] and further explored by Chlipala [Chl14] to make variables
well-typed by construction and therefore fit in our intrinsically typed approach.

A De Bruijn index is a natural number representing an occurrence of a variable,
and the value denotes the number of binders in scope between the occurrence and the
corresponding binder. For CSL we have binding structures in the case of Transfer and
template declarations. Take for instance the following contract specification

letrec f [x, y] = Transfer(A1, A2, R, T |A1 = ”alice” ∧R = iPhone).f(x, y) in
f(2019-09-02,True) (4.1)

With De Bruijn indices we could represent this as

letrec f [2] = Transfer(4 |x3 = ”alice” ∧ x5 = iPhone).f(x1, x2) in
f(2019-09-02,True) (4.2)

Where we write f [2] to denote that f takes two arguments and xn to denote a variable
with De Bruijn index n. One major advantage of using De Bruijn indices is that we do not
have to worry about α-equivalence. That is defining equality of terms up to renaming
of variables. With De Bruijn indices there is a canonical encoding for a Transfer and a
template declaration.

Now to make the indices dependently typed in Coq we define a De Bruijn index as
a membership predicate on a list:

26

CHAPTER 4. MECHANIZATION OF CSL IN COQ

Inductive member A x : list A → Type :=
| HFirst : ∀ ls, member x (x :: ls)
| HNext : ∀ x’ ls, member x ls → member x (x’ :: ls).

Which can be used to prove that a certain type is a member of a typing environment.
For instance if we have a typing environment for the previous contract

Example ∆ : list ty := [Timestamp; Bool; Agent, Agent; Resource, Timestamp].

then the variable x3 will be encoded as

Example x3 : member Agent ∆ := HNext (HNext HFirst).

Representing the fact that x3 is a variable with De Bruijn index 3 and type Agent.
For the actual environment we use a heterogeneous list. It will be a dependent type

indexed by a typing environment list A and a denotation function B that denotes each
type in the typing environment.

Inductive hlist A (B : A → Type) : list A → Type :=
| HNil : hlist B nil
| HCons : ∀ x ls, B x → hlist ls → hlist (x :: ls).

In this definition B makes the hlist very generic. It makes it possible to parameterize
the list with a type-level function that defines the types of elements in the list. This will
be useful for reusing the typing environment for different objects in our mechanization.
In addition to variable bindings, we are using it for template environments, arguments
to templates and for abstract environments for the analyses in a later chapter.

To retrieve elements from the heterogeneous list we have a function

hget : ∀ A (B : A → Type) x ls, hlist B ls → member x ls → B x.

Which, given a De Bruijn index, will retrieve an object of the correct type. If we take
an actual environment with a type level function tyDenote : ty → A then for an actual
environment δ : hlist tyDenote ∆ we can retrieve the value of type A with hget δ x3

There are also other functions for hlists for appending, updating and destructing
which can be found in CSL/HList.v. In the next sections we will use the hlist for all our
environments and the member predicate for all our bindings.

4.2 Expressions

In spirit of the original paper we could have parameterized the mechanization by an ex-
pression language making the development very generic, but for ease of mechanization
we have fixed the syntax of expressions to be the following

Inductive exp ∆ : ty → Set :=
| Var : ∀ τ, member τ ∆ → exp ∆ τ
| Lit : ∀ τ, tyDenote τ → exp ∆ τ
| Binop : ∀ τ1 τ2, binop τ1 τ2 → exp ∆ τ1 → exp ∆ τ1 → exp ∆ τ2
| Unop : ∀ τ1 τ2, unop τ1 τ2 → exp ∆ τ1 → exp ∆ τ2.

With binop and unop being the usual set of binary and unary operators on booleans and
integers. Note that the expression language is intrinsically typed with a type τ and
parameterized with a typing environment ∆ for free variables. Variables are defined
using the member predicate from before, and a correctly typed De Bruijn index will result
in a correctly typed expression.

To denote types of expressions we write a type level function. For our simple
mechanization we denote agents by strings, resources and timestamps by natural

27

CHAPTER 4. MECHANIZATION OF CSL IN COQ

numbers and bools by bools. In this way we are not including any complicated domains
for resources and timestamps. We can think of the number denoting a resource as the
value, or an index into the universe of resources. The timestamp can be thought of as
the time difference since some epoch.
Fixpoint tyDenote (t : ty) : Set := match t with
| Agent ⇒ string | Resource ⇒ nat | Timestamp ⇒ nat | Bool ⇒ bool end.

For mappings from variables to values, we use an hlist for the environment.
Definition env ∆ := hlist tyDenote ∆.

The argument tyDenote encodes that elements of the hlist are values corresponding
to the types of ∆. To denote expressions with values we write a simple recursive
interpreter.
Fixpoint expDenote ∆ τ (e : exp ∆ τ) (δ : env ∆) : tyDenote τ.

This demonstrates one of the strengths of using intrinsically typed syntax. We have that
the interpreter for expressions is inherently type preserving by construction. The only
thing we prove for now is the decidability of expression evaluation.
Lemma expDenote_dec : ∀ ∆ τ (e : exp ∆ τ) (δ : env ∆) (v : tyDenote τ),
{expDenote e δ = v} + {expDenote e δ <> v}.

Which means that for any value, either an expression evaluates to it, or it does not. We
can now describe how we encoded the syntax of CSL in Coq.

4.3 Syntax

We write the syntax of CSL as an inductive type indexed by a template environment Γ
and the a typing environment ∆.
Inductive contract Γ ∆ : Set :=
| success : contract Γ ∆
| failure : contract Γ ∆
| tapp : ∀ ts, arg_env ts ∆ → member ts Γ → contract Γ ∆
| transfer : exp (new_var ∆) Bool → contract Γ (new_var ∆) → contract Γ ∆
| alternate : contract Γ ∆ → contract Γ ∆ → contract Γ ∆
| sequence : contract Γ ∆ → contract Γ ∆ → contract Γ ∆
| concurrent : contract Γ ∆ → contract Γ ∆ → contract Γ ∆.

The interesting definitions are the ones for template applications and transfers. When
applying a contract template, we have a list of expressions with different types. We use
a hlist indexed with the type signature of the template to store expressions with those
types.
Definition arg_env ts ∆:= hlist (exp ∆) ts.

We then use De Bruijn indices to specify which function template from the global
template environment Γ we are instantiating. In the case of transfers we extend the
global environment with 4 new variables that are bound in both the predicate and the
subcontract. The definition of new_var is
Definition new_var ∆ := Agent :: Agent :: Resource :: Timestamp :: ∆.

Note that with this definition of the syntax we have faithfully encoded the typing rules
of Figure 2.2. This is what makes the encoding intrinsically typed, since we do not need
an explicit typing judgment. All terms are well-typed by construction.

We also define a function that evaluates all expressions passed as arguments to a
template for use in the semantics.

28

CHAPTER 4. MECHANIZATION OF CSL IN COQ

Fixpoint arg_envDenote ts ∆ (δ : env ∆) (ae : arg_env ts ∆) : env ts.

Finally we use the notation feature of Coq where we can add custom syntax to make
contracts easier to write
Notation "A ;; B" := (sequence A B) (at level 80, right associativity).
Notation "A :+: B" := (alternate A B) (at level 79, left associativity).
Notation "A :||: B" := (concurrent A B) (at level 78, left associativity).

4.4 Contract satisfaction

Before mechanizing the contract satisfaction relation we start by providing denotations
for events and traces. They are pretty basic, an event transfer(a1, a2, r, t) is just a simple
inductive data type
Inductive event := Event : Agent → Agent → Resource → Timestamp → event.

and traces can simply be denoted as finite lists of events
Definition trace := list event.

The environment of templates D is a hlist with contracts.
Definition template_env Γ := hlist (contract Γ) Γ.

The definition partially applies the contract type to the template typing environment Γ
fixing it for all template bodies. The last parameter to hlist specifies the the argument
types to each contract template. This definition makes the templates mutually recursive
and provides argument types for all contract templates in one single definition. We do
not encode the top level contract declaration td, and we assume that D has already been
constructed. Therefore we only encode the judgment δ `D s : c.

We translate the contract satisfaction judgment directly into Coq by encoding the
rules as an inductive datatype.
Inductive csat : ∀ Γ ∆, env ∆ → template_env Γ → trace → contract Γ ∆ → Prop.

We are now forced to formalize what it means to interleave and append two traces.
We define this using two relations interleave and appends. They are defined as you
would expect, and can be found in the accompanying code. Most rules are as you would
expect, but we show the rules for template application and transfers:
| AppF : ∀ ts Γ ∆ δ (D : template_env Γ) (ae : arg_env ts ∆) f t,

csat (arg_envDenote δ ae) D t (hget D f) → csat δ D t (tapp ae f)
| Transfer : ∀ Γ ∆ (D : template_env Γ) δ e (p : exp (new_var ∆) Bool) t c,

csat (addEvent e δ) D t c →
expDenote p (addEvent e δ) = true →
csat δ D (e :: t) (transfer p c)

For transfers expDenote p δ′ = true encodes δ |= P when p encodes P and δ′ encodes δ.
For template applications we see that the De Bruijn indexing also works nicely for
templates. f is a De Bruijn index proving that there is a template in D with the correct
type. Everything in these definitions fits nicely together, and it is clearly readable
without any auxiliary typing proofs.

4.5 Denotational semantics

In Section 2.4 we hinted the existence of a denotational semantics for CSL, and in this
section we will try to encode a form of denotational semantics in Coq.

29

CHAPTER 4. MECHANIZATION OF CSL IN COQ

The denotations of contract specifications are sets of traces, which we need to encode
in Coq. The sets of traces are interesting since they are possibly infinite. We choose to
encode them using characteristic functions. Given a set A ⊆ U , then a characteristic
function

fA : U → {true, false}

is defined such fA(x) = true if and only if x ∈ A. Sets as characteristic functions in Coq
are provided by Uniset from the standard library1. They are simply function from a set
A with decidable equality to bool.

Inductive uniset : Set :=
Charac : (A → bool) → uniset.

Using uniset we can then say that the denotation of a contract is

Definition contract_denotation := uniset trace.

There is an interesting consequence of using characteristic functions to define the
denotational semantics of CSL. Whenever we denote a contract we build a function
from traces to booleans. Whenever we denote, say c1 ‖ c2 we have to construct the
function that given a trace t computes all possible interleavings and then returns true
if and only if for at least one interleaving (t1, t2) t it is the case that t1 is in the
denotation of c1 and t1 is in the denotation of c2.

To construct all of these pairs we implement functions that compute them:

Fixpoint interleavings (T : Set) (l : list T) : list (list T * list T).
Fixpoint appendings (T : Set) (l : list T) : list (list T * list T).

And we prove that they compute the same interleavings and appendings that we can
construct with the relations used in the trace satisfaction relation. For instance we show
the following lemma for interleavings:

Lemma interleavings_interleave : ∀ (T : Set) (t t1 t2 : list T),
List.In (t1, t2) (interleavings t) ↔ interleave t1 t2 t.

Now we can try to write a denotation function that maps contract specifications to
sets of traces:

Fixpoint contractDenote Γ ∆ (c : contract Γ ∆) (D : template_env Γ) (δ : env ∆)
: uniset trace :=

| success _ _ ⇒ Singleton _ _ nil
| failure _ _ ⇒ Emptyset _
| (c1 ;; c2) ⇒ Charac (fun t ⇒

let tc1 := contractDenote n c1 D δ in
let tc2 := contractDenote n c2 D δ in
existsb (fun pt ⇒

match pt with
| (t1, t2) ⇒ charac tc1 t1 && charac tc2 t2
end) (appendings t))

| fapp ae f ⇒ contractDenote (hget D f) D (argEnvDenote δ ae)
| _ ⇒ _ (* Rest of cases ignored for now *)
end.

But we have a problem. Coq rejects this definition since the it is not structurally recursive
over any of its arguments. Coq cannot prove that c gets smaller, and in that way ensure
termination. This is also correct, since any c’ that we look up in the function environment
may be larger.

1https://coq.inria.fr/stdlib/Coq.Sets.Uniset.html

30

https://coq.inria.fr/stdlib/Coq.Sets.Uniset.html

CHAPTER 4. MECHANIZATION OF CSL IN COQ

To solve this problem we now need a way of modelling possible non-termination
in Coq. We are going to follow the approach taken in [Chl14] where Chlipala uses to
notion of approximation levels among computation results to model non-termination.
We define an approximation level as a natural number n that corresponds to the depth
of the recursion on the syntax tree.

Chlipala also lifts the domain that he is working with to include⊥ to denote possible
non-termination. In our case with sets of traces we have a complete lattice partially
ordered by set inclusion, and we do not have to lift the domain with⊥ to denote possible
non-termination since⊥ = ∅ is already present. This feature of our domain makes things
a lot simpler for us, but also makes it less natural since we cannot distinguish between
non-terminating contracts and contracts with no satisfying trace.

Now to guarantee termination of our interpreter we provide the approximation level
as an argument which we then decrease by 1 in each recursive call. If the approximation
level is zero, we indicate possible non-termination:

Fixpoint contractDenote n Γ ∆ (c : contract Γ ∆) (D : template_env Γ) (δ : env ∆)
: uniset trace := match n with
| O ⇒ Emptyset _
| S n ⇒ match c with
| success _ _ ⇒ Singleton _ _ []
| failure _ _ ⇒ Emptyset _
| tapp ae f ⇒ contractDenote n (hget D f) D (arg_envDenote δ ae)
(* And so on *)
end end.

Coq accepts this definition, but now we have to convince ourselves that this encoding
captures the meaning of the denotational semantics. To do this we try to prove that our
interpreter is continuous in the sense of domain theory. That is running the interpreter
at a higher approximation level will only give us a larger set of valid traces for the
contract:

Lemma contractDenoteContinuous :
∀ n Γ ∆ (c : contract Γ ∆) (D : template_env Γ) (δ : environment ∆),
incl (contractDenote n c D δ) (contractDenote (S n) c D δ).

which is a corollary from a stronger statement, namely that it holds for any higher
approximation level.

We now have to define what is means that a contract denotes a trace set. There is one
obvious candidate where for a trace to be included in the denotation of a contract, there
has to exist an approximation level such that the trace is included in the denotation
when run at that approximation level:

Definition denotes’ Γ ∆ (δ : env ∆) (D : template_env Γ) c t :=
∃ n, In (contractDenote n c D ∆) t.

It turns out that we need a stronger definition in some proofs. Intuitively we can also
say that when we reach some approximation level where a trace is in the denotation,
then no matter now much we increase the approximation level, the trace will still be
included in the denotation of the contract.

Definition denotes Γ ∆ (δ : env ∆) (D : template_env Γ) c t :=
∃ n, ∀ m, n ≤ m → In (contractDenote m c D δ) t.

It turns out that the definitions are the equivalent

Lemma denotes_denotes’_equiv: ∀ Γ ∆ (δ : env ∆) (D : template_env Γ) c t,
denotes δ D c t ↔ denotes’ δ D c t.

31

CHAPTER 4. MECHANIZATION OF CSL IN COQ

Which again follows from continuity. This result is nice since we can use the most
appropriate definition for proving the property at hand. We now have to convince
ourselves that this definitional interpreter is correct with respect to the trace satisfaction
relation.

4.5.1 Equivalence with satisfaction relation

Where Theorem 2.1 relate the trace satisfaction relation and the denotational semantics,
we prove the corresponding statement with respect to our definitional interpreter.

Theorem csat_denotes : ∀ Γ ∆ (δ : env ∆) (D : template_env Γ) t c,
csat δ D t c ↔ denotes δ D c t.

Where the left-to-right direction is proven by induction on the satisfaction derivation,
and the right-to-left direction is proven by induction on the approximation level and
then by case analysis of c. It is not possible to prove this on the syntax of c since
the interpreter is not structurally recursive, and therefore the induction would not go
through in the case of template application.

This completes the mechanization of the trace satisfaction semantics and the denota-
tional semantics. Before we can mechanize the reduction semantics, we need to define
substitution for contract specifications.

4.6 Substitution

In the style of Benton et al. [Ben+11], we define a typed substitution as a map from
variables to expressions.

Definition Sub ∆ ∆’ := ∀ τ, member τ ∆ → exp ∆’ τ.

So all variables in ∆ should map to an expression typed in ∆′. We also provide a
denotation of a substitution as a transformation from one environment to another:

Fixpoint subDenote ∆ ∆’ : Sub ∆’ ∆ → env ∆ → env ∆’.

It takes the expressions from the substitution for all variables and evaluates them and
puts them in the environment typed with ∆′. And now we define a function that applies
a substitution to a contract specification.

Fixpoint SubstContract Γ ∆ ∆’ (s : Sub ∆ ∆’) (c : contract Γ ∆) : contract Γ ∆’.

For use in the correctness for the reduction semantics, we need to prove that substitution
commutes. This means that applying the substitution to the contract has the same
satisfying traces as the contract does in the denoted substitution:

Lemma substCommCsat :
∀ ∆ Γ (D : template_env Γ) (c : contract Γ ∆) ∆′ (s : Sub ∆ ∆′) t,
∀ δ, csat (subDenote s δ) D t c ↔

csat δ D t (SubstContract s c).

This is actually proven by using the denotational semantics, but by the previous the-
orem we also have this for the trace satisfaction semantics. This substitution lemma
corresponds to Lemma 2 in Andersen et al. [And+06].

One thing that is very nice about the intrinsic encoding is that we can directly state
in the type of a contract whether it is closed. A closed contract will have the type
contract Γ [] stating that there are no free variables since nothing has membership in [] .

32

CHAPTER 4. MECHANIZATION OF CSL IN COQ

For the reduction semantics we are going to use two special substitutions. One
substitutes in the arguments to a template when reducing a template application. This
will be a substitution from the environment indexed by the typing signature ts to the
empty environment:

Fixpoint argEnvSub ts (ae : arg_env ts []) : Sub ts [].

We prove that this substitution commutes with evaluating the arguments to a template

Lemma argEnvDenoteArgEnvSub : ∀ ty (ae : arg_env ty []),
arg_envDenote HNil ae = subDenote (argEnvSub ae) HNil.

The other substitution that we need for the reduction semantics substitutes in the
variables from an event, and gets rid of the free variables when reducing a Transfer.

Definition eventSub ∆ (e : event) : Sub (new_var ∆) ∆.

4.7 Residuation

In this section we are going to mechanize residuation and the reduction semantics of
CSL. For this we will start by defining what it means to be a residual contract. We say
that c′ is the residual contract for c given an event e if the residual contract denotes the
rest of the trace. We write this in Coq exactly like we did in Section 2.5:

Definition residuates Γ ∆ (D : template_env Γ) (c c’ : contract Γ ∆) e :=
∀ t δ, csat δ D t c’ ↔ csat δ D (e :: t) c.

4.7.1 Nullability

To mechanize both guardedness and the reduction semantics we need to encode nulla-
bility. We define syntactic nullability from Figure 2.4 as a relation:

Inductive nullable : ∀ Γ ∆, template_env Γ → contract Γ ∆ → Prop.

We prove that a nullable contract actually admits the empty trace. This is the semantic
characterization of nullability.

Theorem nullability : ∀ Γ ∆ (δ : env ∆) (D : template_env Γ) c,
nullable D c ↔ denotes δ D c [].

We might need to talk about closed contracts as well as open contracts so we prove that
if we have any substitution then it does not change the nullability of a contract.

Lemma nullableSub : ∀ Γ ∆ ∆′ (D : template_env Γ) (c : contract Γ ∆) s,
nullable D c ↔ @nullable Γ ∆′ D (SubstContract s c).

Finally we differed from the paper formalization a bit in the case of semantic nullability.
In the original paper they state semantic nullability by saying that there exists an
environment where the contract denotes the empty trace. We said that is should be the
case for all environments. For our definition to imply the existence, we just need to
show that environments are inhabited. We do this by proving the following lemma:

Lemma env_inhabited : ∀ ∆, inhabited (env ∆).

Where inhabited A just requires us to give a term of type A.

33

CHAPTER 4. MECHANIZATION OF CSL IN COQ

4.7.2 Guardedness

Just like for nullability we state guardedness as a relation on contracts. This is a direct
encoding of the rules in Figure 2.5.

Inductive guarded : ∀ Γ ∆, template_env Γ → contract Γ ∆ → Prop.

We define guardedness for template environments by requiring all bodies in templates
to be guarded.

Definition fguarded Γ (D : template_env Γ) :=
∀ ts (f : member ts Γ), guarded D (hget D f).

This is very easy to state with the dependently typed De Bruijn indexing of template
names. It is very easy to make a statement for all valid templates.

It turns out that we need guardedness for closed contracts without free variables.
Note that for a template body to be closed, we need to substitute in values for arguments.
We make a similar relation as for open contracts, but we make sure that it is between
closed contracts.

Inductive guarded0 : ∀ Γ template_env Γ → contract Γ [] → Prop.
Definition fguarded0 Γ (D : template_env Γ) := ∀ ts (f : member ts Γ) ae,

guarded0 D (SubstContract (argEnvSub ae) (hget D f)).

We show that guardedness for templates implies guardedness for all contract specifica-
tions with those templates. We only show it for open contracts here, but we have also
shown it for closed contracts.

Lemma fguarded_guarded : ∀ Γ ∆ (D : template_env Γ) (c : contract Γ ∆),
fguarded D → guarded D c.

We also show that guardedness for open contracts implies guardedness for closed
contracts

Lemma fguarded_equiv : ∀ Γ (D : template_env Γ),
fguarded D → fguarded0 D.

These lemmas are used when showing properties about the deterministic reduction
semantics, and it turns out that it is much easier to use the closed definition.

4.7.3 Delayed matching

To encode the delayed matching semantics from Figure 2.6 we make an inductive
datatype encoding the rules directly. It encodes an inductive relation between two
closed contracts and an event.

Inductive delayed_matching Γ :
template_env Γ → contract Γ [] → event → contract Γ [] → Prop.

| transferDelay1 : ∀ e D (p : exp (new_var []) Bool) c,
expDenote p (addEvent e HNil) = true →
delayed_matching D (transfer p c) e (SubstContract (eventSub e) c)

| transferDelay2 : ∀ D e (p : exp (new_var []) Bool) c,
expDenote p (addEvent e HNil) <> true →
delayed_matching D (transfer p c) e (failure _ _)

(* Additional rules *)

For transfers we write SubstContract (eventSub e) c to substitute the values from the event
into the subcontract c. Then we reduce to the remaining contract if the predicate is true,
otherwise we reduce to failure. This is exactly what we write in Figure 2.6. The rest of
the rules are as you would expect.

34

CHAPTER 4. MECHANIZATION OF CSL IN COQ

We now prove that if a contract matches an event and transforms into a residual
contract, then it is a valid residuation.
Theorem delayed_matching_res : ∀ Γ (D : template_env Γ) (c c’ : contract Γ []) e,

delayed_matching D c e c’ → residuates D c c’ e.

We also prove that if D is guarded, then there is a unique residuation which is also
guarded. Note that we can write ∃! in Coq to denote unique existence. This requires us
to prove uniqueness after claiming that the c′ exists.
Theorem unique_residuation : ∀ Γ (D : template_env Γ) e (c : contract Γ []),

fguarded D → ∃ ! c’, delayed_matching D c e c’ ∧ guarded D c’.

This proof relies of determinism of the expression language to make a case analysis
whether the predicate will be true or not given the event. This concludes the mechaniza-
tion of the delayed matching semantics. We will now continue with the eager matching
semantics.

4.7.4 Eager matching

Just like before we encode the eager semantics from Figure 2.7 as an inductive data type:
Inductive eager_matching Γ :
template_env Γ → contract Γ [] → option event → contract Γ [] → Prop.

Where Some e corresponds to an actual event and None corresponds to a spontaneous
τ -transition.

We show the soundness of eager matching by considering τ -transitions and tran-
sitions on actual events separately. First we show that if we make a τ -transition we
remain sound. In this case it means that after a τ -transition, we should not denote more
traces than before.
Theorem eager_sound_tau : ∀ Γ (D : template_env Γ) c c’ t,

eager_matching D c None c’ → (denotes HNil D c’ t → denotes HNil D c t).

Then when reducing on a concrete event Some e we show that we are sound with respect
to the residual contract
Theorem eager_sound_event : ∀ Γ (D : template_env Γ) c c’ t e,

eager_matching D c (Some e) c’ → (denotes HNil D c’ t → denotes HNil D c (e :: t)).

For the completeness of eager matching, we start by defining what it means to τ -step
between two contracts. This is an inductively defined relation from one closed contract
to another by making a sequence of τ -reductions. We say that either a contract τ -steps
to itself, or it makes one additional τ -reduction.
Inductive tau_steps_eager Γ (D : template_env Γ) : contract Γ [] → contract Γ [] → Prop.
| step0 : ∀ c, tau_steps_eager D c c
| stepS : ∀ c c’ c’’,

eager_matching D c None c’ → tau_steps_eager D c’ c’’ →
tau_steps_eager D c c’’.

We prove that this relation is transitive, and that it is injective with respect to both
branches in parallel composition:
Lemma tau_steps_inj_conc : ∀ Γ (D : template_env Γ) c1 c1’ c2 c2’,
tau_steps_eager D c1 c1’ →
tau_steps_eager D c2 c2’ →
tau_steps_eager D (c1 :||: c2) (c1’ :||: c2’).

And that it is injective with respect to the first contract in sequential composition:

35

CHAPTER 4. MECHANIZATION OF CSL IN COQ

Lemma tau_steps_inj_seq : ∀ Γ (D : template_env Γ) c1 c1’ c,
tau_steps_eager D c1 c1’ →
tau_steps_eager D (c1 ;; c) (c1’ ;; c).

These statements are needed to prove that a nullable contract τ -steps to Success.
Lemma nullable_tau_steps : ∀ Γ ∆ (D : template_env Γ) (c : contract Γ ∆) s,
nullable D c →
tau_steps_eager D (SubstContract s c) (success _ _).

Now that we have this machinery defined, we are ready to prove the completeness
of eager matching. The corresponding theorem in Andersen et al. [And+06] states that
if D `D c

e−→ c′ then there exists a non-empty set of contracts {c1, . . . , cn} such that
D `N c

e−→ ci for all i ∈ 1 . . . n and D ` c′ ⊆ Σn
i=1ci.

When encoding this we have to make some choices. There are multiple ways of
encoding the last statement. Either we could say that c′ is included in each of the
alternatives, or that we actually construct one large syntactic alternative. We have
chosen to interpret it as a syntactic alternative, meaning that the sum is actually an
object-level sum in CSL.

Σn
i=1ci = c1 + (c2 + (· · ·+ (cn + Failure) · · ·))

In Coq this is a fold with syntactic +.
Definition alternatives cs := fold_right (fun c1 c2 ⇒ c1 :+: c2) (failure _ _) cs.

So the statement D ` c′ ⊆ Σn
i=1ci gets encoded as

∀ t, denotes D HNil c’ t → denotes D HNil (alternatives cs) t

We faithfully encode the statement of the theorem like this:
Theorem eager_complete : ∀ Γ (D : template_env Γ) (c c’ : contract Γ []) e,

delayed_matching D c e c’ →
∃ cc cs, (* non-empty list *)
Forall (fun c’’ ⇒ eager_matching D c (Some e) c’’) (cc :: cs) ∧
∀ t, (csat HNil D t c’ → csat HNil D t (alternatives (cc :: cs))).

Note that we require one additional element cc to ensure that the list is non-empty. Now
if we have a delayed matching, then there exists a non-empty list of contracts, such
that all of them eagerly matches the event, and if the original residual contract from the
delayed matching is satisfies a trace, then the big syntactic alternative of all the possible
eager matches also satisfies the trace. Note that Forall is a predicate that extends a
predicate p : A → Prop onto a list and holds whenever p a holds for all elements a in the
list.

This proof is a bit of a pain. If we take one of the cases, say the delayed matching of
sequential composition with the first contract being nullable.

D ` c nullable D `D c
e−→ d D `D c′

e−→ d′

D `D c; c′
e−→ (d; c′) + d′

Then we discharge the induction hypothesis on both delayed matchings and we get two
lists of alternatives d1, . . . , dn and d′1, . . . , d

′
m. The resulting list of alternatives that will

make the case work out will be d1; c′ + · · · + dn; c′ + d′1 + · · · + d′m. Constructing this
with lists in Coq requires a lot of small lemmas about lists and alternatives, sequence
and so forth and it is very technical.

We will now move on to the second part of the thesis which is contract analysis. We
will start by giving some background on abstract interpretation.

36

Chapter 5

Abstract interpretation

In this short chapter we will introduce the concept of abstract interpretation. For this we
will use some lattice theory. The subset of lattice theory that we will use in the following
chapters is described in Appendix B.1.

In computability theory, Rice’s theorem states that all non-trivial semantic properties
of programs are undecidable. This is also true for CSL even when the expression
language is fairly simple. This means that answering any non-trivial question about a
contract is in general undecidable.

Abstract interpretation [CC92a] is a framework for defining sound analyses that
approximate the behavior of computer programs. The main application of abstract
interpretation is static analysis where we compute properties of programs without
running them.

The classical abstract interpretation approach starts with an operational semantics
for the programming language to be analyzed. Then a collecting semantics is defined
as the strongest set of static properties of interest. Then an abstraction of the collecting
semantics is performed to make an analysis effectively computable. This abstraction
is typically described by a Galois connection to a complete lattice. To find a concrete
analysis result, fixed point algorithms are used to find a fixed point on the analysis
lattice.

5.1 Collecting semantics

The collecting semantics (or static semantics in some sources) have to be designed in a
way that it captures all possible properties of interest. Some properties can be forgotten
if they are not interesting to us. For instance non-termination is described by some
semantics, but not others. The collecting semantics is often taken to be the fixed point
of some operational semantics. In the fixed point we have all executions of programs,
terminating and non-terminating.

There is no single definition of what a collecting semantics is, and it might vary
depending on the nature of the language and how its semantics is defined. It also
depends on the properties we are interested in. If we only care about terminating
programs, then a big-step semantics or denotational semantics might be OK, but if we
also care about diverging programs then a small step semantics might be better suited.

In this thesis we are going to think of a collecting semantics as the semantics that
collects all possible behaviors of a program, where the operational semantics might
only describe one particular execution. So if one execution of the program is described

37

CHAPTER 5. ABSTRACT INTERPRETATION

by a value ` ∈ L then all the possible behaviors are described by a set S ⊆ L. For
an imperative program, a particular execution can be described by a final state of the
memory, and the collecting semantics is a set of possible states that might be the result
of running the program.

5.2 Galois connections

The purpose of the Galois connection is to abstract the collecting semantics into an
abstract semantics. The collection semantics is usually defined as a fixed point of the
concrete semantics resulting in a set of possible executions. The Galois connection then
expresses a correspondence between the collection semantics and the abstract properties
as a pair of functions:

Definition 5.1. A Galois connection between to lattices (A,⊆) and (B,v) is a pair of monotone
functions α : A→ B and γ : B → A such that

∀a ∈ A, b ∈ B.α(a) v b⇐⇒ a ⊆ γ(b).

In a Galois connection, elements of A are typically sets of semantic values and elements
of B are properties describing them. If we consider arithmetic expressions, a collecting
semantics might define sets of integers that an expression might evaluate to. A classic
example is abstracting this domain into a domain of signs.

Example 5.1. P(Z) is a complete lattice. We can abstract this into a lattice of signs S =
{⊥,>, 0,+,−} where ⊥ < 0 < >, ⊥ < + < > and ⊥ < − < >. by the following abstraction
function:

α({0}) = 0

α({}) = ⊥
α(S) = + if all elements of S are strictly positive
α(S) = − if all elements of S are strictly negative
α(S) = > otherwise

Now we can define the concretization function as:

γ(0) = {0}
γ(+) = {z ∈ Z | z > 0}
γ(−) = {z ∈ Z | z < 0}
γ(⊥) = {}
γ(>) = Z

It is routine to check that γ and α are monotone. We can prove that it is a Galois connection by
considering the cases for α and γ. For instance let a ⊆ P(Z) be a set with all strictly positive
elements and now assume that α(a) ≤ b. By the ordering on S, b is + or >. In both cases it is
the case that a ⊆ γ(b). We can do similar proofs for the rest of the cases. This will prove that we
have a Galois connection.

We are not going to formulate Galois connection as Cousot and Cousot does it, but
we are going to use representation functions that are maps between values and the

38

CHAPTER 5. ABSTRACT INTERPRETATION

best properties describing them. A representation function is on the form β : V → L,
and we are going to derive a Galois connection between P(V) and L from it. As
described in [NNH99], the following functions describe a valid Galois connection using
representation functions:

• γ : L→ P(A) = λ`.{v | β(v) v `}

• α : P(A)→ L = λV.
⊔
v∈V β(v)

To find an analysis of a program in the abstract domain we are going to exploit the fact
that we required L to be a complete lattice. This means that if the functions from our
abstract semantics are monotone, then we can find a fixed point using relatively simple
algorithms.

5.3 Fixed point algorithms

Given a complete lattice (L,v), then in an analysis setting, we can think of a program p
as transforming one property ` into another property `′. That is ` = f(`′). In the case
of recursive programs, the analysis of a function might depend on itself, so in some
sense ` = f(`). We typically require f to be monotone, and to find a solution we hope
that upwards iteration from ⊥ finds a fixed point. That is fn(⊥) = fn+1(⊥) for some
n. When L has finite ascending chains, then fn(⊥) always terminate for some n with
fn(⊥) = lfp(f), since the iteration of f forms an ascending chain. We describe this in
the appendix. For the analyses in this thesis we are going to use abstract domains that
do have infinite ascending chains. For this we will use the technique of widening to
ensure termination of the fixed point method.

5.3.1 Widening

The widening technique as described by Cousot and Cousot [CC92b] is used to approxi-
mate fixed points on complete lattices. A widening operator O : L× L→ L is used to
force every ascending chain in the lattice to be finite. We write

`On =

{
`n if n = 0

`On−1 O `n if n > 0

to denote that we put the widening operator between each value of a chain. We require
the following properties of the widening operator:

• `1 v `1 O `2 w `1, for all `1, `2 ∈ L.

• For all ascending chains (`n)n, the ascending chain (lOn)n eventually stabilizes.

Instead of naively iterating from ⊥we define a new iteration strategy for f :

fnO =

⊥ if n = 0

fn−1
O if n > 0 ∧ f(fn−1

O) v fn−1
O

fn−1
O O f(fn−1

O) otherwise

where we essentially put the widening operator between every application of f . And
now Nielson and Nielson [NNH99] prove that if O is a widening operator, then (fnO)n

39

CHAPTER 5. ABSTRACT INTERPRETATION

eventually stabilizes. We can then use this iteration strategy when finding fixed points
on complete lattices that has infinite ascending chains.

For the interval lattice one widening operator is:

⊥ O y = y

x O⊥ = x

[a1, b1] O [a2, b2] = [a, b]

where a =

{
a1 when a1 ≤ a2

−∞ otherwise

b =

{
b1 when b2 ≤ b1
∞ otherwise

Intuitively it only allows us to make the bounds larger once, and then afterwards we
will just go to∞ or −∞. Take for instance the infinite chain

[0, 1] @ [1, 1] @ [1, 2] @ [1, 3] · · ·

If we apply widening between every element, we get the chain

[0, 1] @ [1, 1] @ [1,∞]

which now stabilizes. There is a large loss of precision here, and more complicated
widening operators can be defined. One simple change is making a fixed number of
iterations before applying widening. There is also the technique of narrowing which
can recover some precision. We will not use narrowing for our analysis of CSL.

40

Chapter 6

Contract analysis

In this chapter we will develop a framework for analyzing compositional contracts,
and we will use this framework to develop a few simple analyses and prove their
correctness.

We motivate the need for contract analysis by looking at a simple multiparty contract
simulating an escrow. Here alice wants to buy a bike from the shop, but to make sure
that she gets the bike, she gives the money to a trusted third party which gives it to the
shop whenever the bike is delivered to alice.

letrec escrow[trusted, seller, buyer, goods, payment, deadline] =
Transfer(buyer, trusted, payment, _).
(Transfer(seller, buyer, goods, T | T < deadline).
Transfer(trusted, seller, payment, T’ | True).Success

+ Transfer(trusted, buyer, payment, T | T > deadline).Success)

in escrow("3rd", "shop", "alice", 1 bike, 1000 EUR, 2019-09-01)

Remember that Transfer(a, b, r, _) is an abbreviation for

Transfer(A, B, R, T | A = a ∧ B = b ∧ R = r)

In this multiparty contract we might want to know how the involved parties are
sending resources. We might want to check that the trusted third party never receives
money from the seller, and is only handling resources from the buyer. We call this
participation analysis, and we are interested in inferring a relation between agents. For
the escrow contract this relation is

Rc = {(3rd→ shop), (shop→ alice), (alice→ 3rd), (3rd→ alice)}

where (3rd→ shop) is read as 3rd transfers a resource to shop. So it should be the case
for all traces satisfying this contract that transfers only happen as described by this
relation.

We might also be interested in the fairness of this contract. That is whether any
participant might benefit too much from participating in the contract in relation to
others. We will call this fairness analysis, and we are interested in inferring a set of
parties and a bound on the cost/benefit of participating in the contract.

As an input to the analysis we will provide a map of resources to real numbers
which provide a valuation of resources. In the case of the escrow contract the valuation
could be:

V = {bike 7→ 900, EUR 7→ 1}.

41

CHAPTER 6. CONTRACT ANALYSIS

Then if we analyze the contract there are two outcomes. If the shop does not deliver the
bike, the shop and alice have no gain or loss. If the shop delivers the bike, the shop
gains 100 and alice loses 100 because of the difference between value and purchase
price. The set we would like to infer is

Rq = {(3rd, [0, 0]), (shop, [0, 100]), (alice, [−100, 0])}.

(shop, [0, 100]) is read as the shop gains between 0 and 100 by participating in this
contract. We will see that the escrow contract is pretty simple to analyze, since it does
not contain any recursion or transfers that can accept a wide array of events. If we look
at a contract like

letrec f[a] = Success + Transfer(S, R, 1 EUR, T | S = a ∨ R = a).f(a)
in f("alice")

Then it looks a lot harder. For the participation analysis we would like to be able to infer
that

Rc = {(> → alice), (alice→ >)}

or in other words: All transfers will have any sender and alice as a receiver or alice as a
sender and any receiver. The best result for the fairness analysis in this case will be

Rq = {(>, [−∞,∞])}

Meaning that all the agents collectively involved in contract execution (which may
include Alice) might receive or pay an arbitrarily large amount by participating in the
contract.

In the spirit of abstract interpretation we are focusing on analyses that work for all
contracts. To make this viable we are going to accept over-approximations in some
cases. We will now explain how to phrase abstract interpretation of CSL.

6.1 Abstract interpretation of CSL

The goal of contract analysis is to extract as much information about the possible be-
haviour of the contract without actually having an actual trace to check for satisfiability.
We would like to answer questions like: “How much will it cost me to participate in this
contract?”, or “Who are the participating parties in this contract?”. These are properties
that are not obvious how to compute just looking at the contract.

We are going to take the classic approach to define an abstract analysis for CSL. First
we will define a collecting semantics for CSL and then we will abstract it using the
Galois connection described below.

6.1.1 Galois connections for CSL

In the case of CSL the Galois connection will be between (P(Tr),⊆) and some lattice
(L,v) describing properties of traces. On Figure 6.1 we have visualized the Galois
connection. Intuitively α abstracts trace sets to properties, and γ maps properties to the
trace sets that are described by them. The figure shows that if we apply the abstraction,
we will always remain sound with respect to the concrete semantics. We will not define
this Galois connection explicitly, but we will use representation functions β : Tr → L to
map traces to the best properties describing them. We will take this approach mainly
because the correctness is going to be based on the trace satisfaction relation, and it

42

CHAPTER 6. CONTRACT ANALYSIS

P(Tr) L

S α(S)
⊆ v

`γ(`)

Figure 6.1: Visualizing the Galois connection

describes individual traces. We will leave the actual representation function unspecified,
since we are interested in defining the most general analysis possible.

The goal is now to have an analysis [[c]]] ∈ L that describes the possible satisfying
traces of a contract. Then we will say that if we have a trace s ∈ Tr satisfying the
contract δ `D s : c then it should be the case that β(s) v [[c]]]. In other words, the
analyzed behavior should describe all possible satisfying traces. Before constructing
the analysis, we will tackle analysis of expressions. This is separate from the actual
abstract analysis just like the definition of the expression language for CSL was almost
independent from the CSL definition.

6.2 Analysis of expressions

In CSL, the only way to accept events is through the transfer construct:

Transfer(A1, A2, R, T |P).c

From the semantics we know that an event is matched by the Transfer if the predicate P
evaluates to true. Therefore to analyze CSL in any meaningful way, we need to be able
to extract information from P . We want to extract information about variables given
that δ |= P and propagate this information to the analysis of the subcontract c. This
is not unlike the proof rule in Hoare logic for if-statements where in the body, we can
assume the condition to be true.

For the analysis of predicates we require an abstract environment M : V ar → A
with a mapping from variables to a complete lattice of abstract values (A,v). We also
require an abstraction function αA that lifts actual values into their abstract counterpart.
If we are dealing with a power set lattice then we can define αA(x) = {x}. We will see
later that the choice of abstract environment will have a large impact on the precision
and complexity of the analysis. For two abstract environments m1,m2 we define an
ordering:

m1 v m2 ⇐⇒ ∀x ∈ V ar.m1(x) v m2(x).

The actual analysis will refine an m ∈M given that the predicate must be true. We write
this as the analysis of P

[[P]]] : M →M⊥.

43

CHAPTER 6. CONTRACT ANALYSIS

Lifting the result into a domain including ⊥ means that we also have the possibility
of returning ⊥ if we are certain that the predicate cannot be satisfied. This makes it
possible to be much more precise in, say, the case of a recursive contract with a simple
condition limiting the number of recursive invocations. This could for instance be a
loan where the number of recurring payments is fixed. For instance the contract

letrec repay[amount, payments] =
Transfer("alice", "bob", amount, _ | payments = 1).Success

+ Transfer("alice", "bob", amount, _ | payments > 1).repay(amount, payments - 1)
in Transfer("bob", "alice", 12000 EUR, _).repay(1000 EUR, 12)

specifying a loan with 12 payments of 1000 euros. Intuitively at some point, payments
will be 1 and the predicate analysis should be able to return ⊥ for the right branch of the
alternative. For the first 11 payments it should be able to return ⊥ for the left branch.

In general we can make a trivial analysis for the predicate by returning the input
directly, this also gives us a sound way to skip analyzing predicates that are too hard.

To make the expression analysis complete we also need to analyze template argu-
ments for an application f(a1, . . . , an) of a template f [x1, . . . , xn] = c. Here we want a
transformation

[[(a1, x1), . . . , (an, xn)]]] : M →M

that changes the current abstract environment into one that can be used to analyze
the body of the template. It could do different things depending on the analysis we
are defining, but a simple implementation can just look up arguments in the abstract
environment and abstract literals. A more complicated analysis might do computations
in order to be more precise (this is necessary for the loan contract repay).

in the following section we describe what we require about the analysis of expres-
sions in order to use it in an analysis for contract specifications.

6.2.1 Correctness

We relate the actual environment to an abstract environment by saying that an abstract
environment describes and actual environment if all variables are described by one in
the abstract environment. We will denote this by a relation RM between δ’s and m’s
such that

δ RM m⇐⇒ ∀x ∈ V ar.αA(δ(x)) v m(x).

We can use this to describe what we require for the correctness of a predicate analysis.
We want it to preserve the overapproximation given that the predicate is satisfiable:

δ RM m ∧ δ |= P =⇒ δ RM [[P]]]m

Thereby preserving the invariant that m is correct. It should also have the property that
if the analysis signals unsatisfiability, then the predicate is not satisfiable:

δ RM m ∧ [[P]]]m = ⊥ ⇒ δ 6|= P

Furthermore when the predicate is satisfiable, then it should be satisfiable in a larger
environment, and the resulting environments should be monotone:

m1 v m′1 ∧ [[P]]]m1 = m2 6= ⊥ ∧ [[P]]]m′1 = m′2 6= ⊥ ⇒ m2 v m′2

44

CHAPTER 6. CONTRACT ANALYSIS

v ::= V ariable (Value expressions)
| Literal

b ::= b1 ∧ b2 (Boolean expressions)
| b1 ∨ b2
| ¬b
| v1 = v2

Figure 6.2: Syntax for simplified predicates

And if the predicate is not satisfiable in a large environment it should not be satisfiable
in a smaller one.

m v m′ ∧ [[P]]]m′ = ⊥ ⇒ [[P]]]m = ⊥

We also require that the abstract evaluation of arguments is an over-approximation. For
an application f(a1, . . . an) of a template f [x1, . . . xn] = c we want that

δ RM m⇒ {x1 7→ Q[[a1]]δ, . . . , xn 7→ Q[[an]]δ} RM [[(a1, x1), . . . , (an, xn)]]]m

And we also require that it is monotone, so evaluating the arguments in a larger envi-
ronment will result in a larger environment.

m v m′ ⇒ [[(a1, x1), . . . , (an, xn)]]]m v [[(a1, x1), . . . , (an, xn)]]]m′

Such an analysis will be useful as a starting point for defining an analysis for contracts.
We will now hint a simple way to phrase such an expression analysis.

6.2.2 An example predicate analysis

In this example we use the power set lattice for variables to describe their possible
values in a non-relational way.

M = V ar → P(D)

where D = A ∪R ∪ T is the domain of all values. When we write an environment, for
instance {a 7→ A}, then it is implicit that all other variables than a maps to >.

We start by assuming that the predicate is written in a specific form. We include
only the usual boolean operators and variables and literals. The syntax of predicates can
be seen on Figure 6.2. For arguments to functions we will also include basic arithmetic.
Since this is a fairly informal treatment, we will also assume that the predicates are
well typed. Now there is a simple and very naive algorithm to extract at least some
constraints from these predicates in Figure 6.3. It is a form of unification, where we
start with some constraints and then we generate a stronger set of constraints from
the equalities in the predicate. We let MC denote the point-wise complement of each
member ofM . We also let t and u denote point-wise union and intersection respectively.

For template arguments a simple algorithm just works for variables and literals and
looks them up or abstracts them. If we do any arithmetic, we just perform it on the
values in the set. We now look at a very simple example of the predicate analysis.

45

CHAPTER 6. CONTRACT ANALYSIS

[[e1 ∧ e2]]]m = [[e1]]]m u [[e2]]]m

[[e1 ∨ e2]]]m = [[e1]]]m t [[e2]]]m

[[¬e]]]m = ([[e]]]m)C

[[v = a]]]m = m[v 7→ (m(v) ∩ {a})]
[[a = v]]]m = m[v 7→ (m(v) ∩ {a})]
[[v = v′]]]m = m[v 7→ (m(v) ∩m(v′)), v′ 7→ (m(v) ∩m(v′))]

[[a = a′]]]m = ⊥ if a 6= a′

[[_]]]m = m

Figure 6.3: Algorithm for extracting constraints from predicates

Example 6.1 (Predicate analysis). If we look at a very simple predicate that might appear as
a predicate in a contract:

P = ((a = ”alice” ∨ a = b) ∧ r = 2 iPhone)

then the result of using the algorithm could be

[[P]]]{b 7→ {”bob”}} = {a 7→ {”alice”, ”bob”}, b 7→ {”bob”}, r 7→ {2 iPhone}}

We also show a short example of how the analysis of template arguments works.

Example 6.2 (Argument analysis). The analysis of the arguments in an application f(x, y−
7 days, 1 iPhone) where D(f) = (f [a1, a2, a3] = c) could be

[[(x, a1), (y − 7 days, a2), (1 iPhone, a3)]]]{y 7→ {2019-10-10, 2019-09-10} =

{a2 7→ {2019-10-03, 2019-09-03}, a3 7→ {1 iPhone}}

More complex algorithms could be developed, and the use of a relational domain could
be very beneficial for especially agents in predicates. Take for instance a transfer

Transfer(A1, A2, R, T |A1 = ”alice” ∨A2 = ”alice”).c

The previous analysis would conclude that both A1 and A2 could be anything, which is
also true if we look at the variables individually, but for any transfer we will have Alice
as either the sender or receiver. This is not sufficient for the participation analysis that
we hinted in the introduction to be precise.

We will now use the general expression analysis framework described here to
develop a general framework for contract analysis that we can use to phrase analyses
that will infer properties on satisfying traces.

6.3 A collecting semantics for CSL

In the true spirit of abstract interpretation, we are going to “calculate” an analysis
for CSL. We are going to do this by systematically transforming the trace satisfaction

46

CHAPTER 6. CONTRACT ANALYSIS

semantics into an abstract semantics for CSL. We are going to differ in one place though.
We are not going to prove the correctness of the collecting semantics with respect to the
original semantics. We are going to wait until we have defined the abstract analysis.

As a first step towards an analysis for CSL we are going to transform the contract
satisfaction semantics into a collecting semantics for CSL. The strongest static property
for a contract is the set of traces that satisfies it, so the collecting semantics are going to
state which traces S ⊆ Tr satisfy a contract.

We are then going to abstract the collecting semantics using the Galois connection
described in Section 5.2 to get a abstract collecting semantics for CSL where we will
end up with a computationally simpler domain. The development in this section is
inspired by the work of Schmidt [Sch95] on doing abstract interpretation based on big
step semantics for a functional programming language.

The choice of basing the analysis on the contract satisfaction semantics has the
consequence of only letting us infer properties of satisfying traces. If a contract is going
to be breached at some point in the future, then no properties that we infer will be valid.
This could be a problem with a practical contract monitoring system, where we accept
events and reduce contracts with the reduction semantics eagerly. We might also be
interested in properties of traces where some prefix does not breach the contract. We
will not investigate these analyses in this thesis.

To get started with the analysis we are going to make an extreme simplification.
We are going to swap out the Transfer(A1, A2, R, T |P).c construct with one with actual
values instead of variables, Transfer(a1, a2, r, t).c. Think of this as just translating

Transfer(a1, a2, r, t).c to Transfer(A1, A2, R, T | a1 = A1∧a2 = A2∧r = R∧t = T).c.

This restricts the language to a great degree, but it serves the purpose of understanding
how we can go from classifying satisfying traces to generating all satisfying traces.

The previous restriction of transfers implies that the variables are going to be useless,
so we also ignore the environment. An attempt at describing all possible traces of a
contract is shown in Figure 6.4. The judgment D . c : S states that a contract c has the
satisfying traces S. The condition that makes this possible is that fact that there can only
be one possible transfer event for any given syntactic Transfer.

Now informally it should be the case that all the satisfying traces are collected into
S:

∅ `D s : c ∧D . c : S ⇒ s ∈ S.

Note that now the analysis is algorithmic in the sense that there is only one rule for
each syntactic constructor of CSL. This removes the inherent non-determinism of the
+-combinator.

As an example derivation of the hypothetical collecting semantics consider the
simple CSL contract

letrec f[] = Success + Transfer(a, b, r, t).f() in f()

and let e = transfer(a, b, r, t). We want the collecting semantics for this contract to be
the infinite tree T =

D . Success : {〈〉}

T
D . f() : {〈〉, 〈e〉, 〈e, e〉, . . .}

D . Transfer(a, b, r, t).f() : {〈e〉, 〈e, e〉, . . .}
D . Success + Transfer(a, b, r, t).f() : {〈〉, 〈e〉, 〈e, e〉, . . .}

D . f() : {〈〉, 〈e〉, 〈e, e〉, . . .}

47

CHAPTER 6. CONTRACT ANALYSIS

D . c : S Contract specification c has trace set S

D . Success : {〈〉} D . Failure : ∅
D . c1 : S1 D . c2 : S2

D . c1 + c2 : S1 ∪ S2

D . c1 : S1 D . c2 : S2

D . c1 ‖ c2 : {s | (s1, s2) ∈ S1 × S2, (s1, s2) s}

D . c1 : S1 D . c2 : S2

D . c1; c2 : {s1 ++ s2 | (s1, s2) ∈ S1 × S2}

D . c : S
D . Transfer(a1, a2, r, t).c : {transfer(a1, a2, r, t)s | s ∈ S}

D . c : S
D . f() : S

D(f) = (f [] = c)

Figure 6.4: Hypothetical collecting semantics for simple CSL

There are details about the co-inductive nature of D . c : S that we will get into later
when actually proving the correctness of the abstract semantics. There we will give
formal rules on how to construct these trees and rigorously prove properties about
them.

In this case we convince ourselves that this collecting semantics somehow captures
all traces described by the trace satisfaction semantics, since every node in the tree
for the collecting semantics will contain the trace in the corresponding derivation for
the trace satisfaction semantics. The correctness of the collecting semantics is not so
important prove rigorously at the moment. The collecting semantics is just a stepping
stone towards an abstract semantics.

Now we want to add the environment δ to the collecting semantics and remove the
restriction on transfers. We will then have a judgment D, δ . c : S. This change has some
interesting consequences. Imagine making a rule for Transfer:

D, δ′ . c : S δ′ = ?

D, δ . Transfer(A1, A2, R, T |P).c : {transfer(?, ?, ?, ?)s | s ∈ S}

It’s not obvious what δ′ should be and the values in the transfer at the head of all traces.
Given the trace satisfaction rule for Transfer, we know that δ′ |= P . We can then think
of the predicate in the Transfer as a function p′ that transforms a δ to a set D of δ′s with
the property that for all the δ′s, δ′ |= P . Formally we write this as a function:

p′(P, δ) = {δ′ | δ′ |= P}

We extend p′ to sets of environments by unioning all the resulting sets of environments:

p(P,D) =
⋃
{p′(P, δ) | δ ∈ D}

48

CHAPTER 6. CONTRACT ANALYSIS

We change the judgment to D,D . c : S such that D is a set of possible environments.
Now we can finally write the rule for Transfer:

D,D′ . c : S D′ = p(P,D)

D,D . Transfer(A1, A2, R, T |P).c : t(S,D′, A1, A2, R, T)

where the effect of a Transfer is described by the function t:

t(S,D, A1, A2, R, T) = {transfer(δ(A1), δ(A2), δ(R), δ(T))s | s ∈ S, δ ∈ D}

The satisfying transfers have actual values from all the possible environments. For
template applications we basically have to evaluate the arguments in all the possible
environments D. This results in a set of environments that can be used in the body:

D,D′ . c : S D′ = {x1 7→ Q[[a1]]δ, . . . , xn 7→ Q[[an]]δ | δ ∈ D}
D,D . f(a1, . . . , an) : S

(D(f) = f [x1, . . . , xn] = c)

This basically concludes the construction of a collecting semantics for CSL. The
collecting semantics is not easily computable, since the function p that computes the
possible environments for the subcontract after a Transfer might be very hard to compute
and will return an infinite set in a lot of cases.

We will from this idealized collecting semantics derive an abstract version that will
be computable by regular fixed point methods.

6.3.1 Abstract collecting semantics

We translate the collecting semantics for CSL into an abstract collecting semantics by
abstracting sets of traces into values ` of a complete lattice (L,v). We abstract sets of
environments as an abstract environment m ∈M : V ar → A where (A,v) is a complete
lattice as well.

Instead of using p to compute possible environments for the remaining contract after
a Transfer we are going to use the predicate analysis defined in Section 6.2:

[[P]]] : M →M⊥.

The predicate analysis will refine abstract environments given the fact theP will evaluate
to true in any of the D′s that was the result of p. If it turns out that the predicate is not
satisfiable, we will return ⊥. We will also reuse the abstract semantics for evaluating
template arguments for an application f(a1, . . . , an) of a contract template f [x1, . . . xn] =
c as a function that returns a new abstract environment for use in the body.

[[(a1, x1), . . . , (an, xn)]]] : M →M

We need a value LSuccess for the analysis of the successful contract Success which might
be different from ⊥ that should somehow describe the empty trace. Since we want
to define the analysis compositionally, we need functions for combining the resulting
analyses in the case of +, ; and ‖:

C+, C;, C‖ : L× L→ L

For + the only option is setting C+ = t. This is because the join of the lattice is the
least element that describes both alternatives. For the other operations we might do

49

CHAPTER 6. CONTRACT ANALYSIS

D,m . c : ` Contract specification c has abstract trace `

D,m . Success : LSuccess D,m . Failure : ⊥

D,m . c1 : `1 D . c2 : `2
D,m . c1 ‖ c2 : C‖(`1, `2)

D,m . c1 : `1 D . c2 : `2
D . c1; c2 : C;(`1, `2)

D,m . c1 : `1 D . c2 : `2
D,m . c1 + c2 : `1 t `2

[[P]]]m = ⊥
D,m . Transfer(A1, A2, R, T).c : ⊥

D,m′ . c : ` m′ = [[P]]]m 6= ⊥
D,m . Transfer(A1, A2, R, T).c : CTransfer(`,m

′, A1, A2, R, T)

m′ = [[(a1, x1), . . . , (an, xn)]]]m D,m′ . c : `

D,m . f(a1, . . . , an) : `
D(f) = (f [x1, . . . , xn] = c)

Figure 6.5: Abstract collecting semantics

something different. It might be that we somehow can exploit the order of events or
that we know that both subcontracts happen.

And now the interesting case for Transfer(A1, A2, R, T |P).cwhere we must combine
the result for c with the result of analyzing P given the bound variables. We describe
this as a function which calculates an analysis given the updated environment and the
result of analyzing the subcontract:

CTransfer : L×M × V ar4 → L

These functions will be abstract versions of the combination functions in the hypothetical
collecting semantics in Figure 6.4. We have added a rule for Transfer in the case that
[[P]]]m = ⊥, just to make the analysis more precise to exploit obviously unsatisfiable
contracts. This will also require that the predicate analysis is decidable, but we do not
consider that requirement unreasonable. The abstract collecting semantics can be seen
in Figure 6.5. If we make sure to construct combination functions such that they respect
the ordering on both P(Tr) and L then we have a correct abstract collecting semantics
with respect to the concrete collecting semantics. This is not something we will prove
though, since we will eventually prove soundness with respect to the trace satisfaction
semantics. We will now investigate what we should require of the combinators and β to
make sure that we have a correct analysis.

6.3.2 Correctness of the combinators

We want to put restrictions on β with respect to the combinators such that (α, γ) is a
valid Galois connection. This is in our case if

∀S ∈ P(Tr), ` ∈ L.α(S) v `⇐⇒ S ⊆ γ(`).

50

CHAPTER 6. CONTRACT ANALYSIS

The soundness requirement for LSuccess that gives us a valid Galois connection is

β(〈〉) v LSuccess. (6.1)

For sequential composition it is natural to require that appending the two satisfying
traces should produce something included in the combination of both subcontracts.
This is also what gives a valid Galois connection

β(t1) v l1 ∧ β(t2) v l2 ⇒ β(t1 ++ t2) v C;(l1, l2). (6.2)

For parallel composition we require something similar, but for an interleaving instead
of an appending.

β(t1) v l1 ∧ β(t2) v l2 ∧ (t1, t2) t⇒ β(t) v C‖(l1, l2) (6.3)

For an event e = transfer(a1, a2, r, t) matched by a Transfer(A1, A2, R, T |P).cwe require
that if we have a correct environment with the values from the event added, then the
result of the combination function should be at least as large as the representation of the
trace with the event in front. Here we reuse the correctness relation between the abstract
environment and the concrete environment from the expression analysis to express that
the abstract values that we extract from the environment are sound approximations of
the actual ones in the transfer.

δ[A1 7→ a1, A2 7→ a2, R 7→ r, T 7→ t] RM m ∧ β(t) v l
⇒ β(e t) v CTransfer(l,m,A1, A2, R, T) (6.4)

Also to facilitate widening of the environment and to be able to use standard fixed point
algorithms we require that all analysis combinators are monotone in their arguments

l1 v l′1 ∧ l2 v l′2 ⇒ Cop(l1, l2) v Cop(l
′
1, l
′
2) (6.5)

And the CTransfer combinator should be monotone in the abstract environment as well as
the analysis of subcontracts

m v m′ ∧ l1 v l2 ⇒ CTransfer(l,m,A1, A2, R, T) v CTransfer(l
′,m′, A1, A2, R, T) (6.6)

We can use these correctness criteria to prove the correctness of the abstract collecting
semantics. But before that we need to define what the derivation trees of the abstract
collecting semantics actually mean.

6.3.3 Abstract semantics trees

As in Schmidt [Sch95] we want to define abstract semantics trees co-inductively from
the rules in Figure 6.5. This is to describe both finite and infinite derivation trees. If we
define the trees only inductively we will limit ourselves to finite derivations. Then the
analysis will fail to describe a lot of interesting recurring contracts.

Let the universe UA be the set of ω-depth1 finitely branching trees whose nodes are
labelled by D,m . c : ` or by ∆ (used when one tree might explore more subcontracts
than another).

1Countably infinite depth

51

CHAPTER 6. CONTRACT ANALYSIS

Figure 6.5 defines a set of rule schemes Φ that have the form

{D,mi . ci : `i}i∈1...n

D,m . op(ci)i∈1...n : f(`i)i∈1...n

Like in Schmidt [Sch95] we define the corresponding functional of Φ, Φ̄ and take the well-
formed abstract semantics trees to be gfp(Φ̄). This includes both finite-depth derivations
and ω-depth trees.

We say that the abstract semantics of the contract specification c in an abstract
environment m is a t ∈ gfp(Φ̄) such that root(t) = D,m.c : ` for some ` ∈ L. Intuitively
abstract semantics trees are built using the rules from the abstract collecting semantics,
but can have possibly infinite paths.

Now we want to show soundness of the abstract semantics. This is simpler than
in [Sch95], since we only have to consider finite derivations of the trace satisfaction
semantics. For this we then avoid co-induction, and can prove soundness only using
structural induction. We now want to show that abstract semantics trees accurately
predicts satisfying traces:

Theorem 6.1. If δ `D s : c by H, δ RM m and we have a tree t ∈ UA with root(t) =
D,m . c : ` then β(s) v `.

Intuitively we want to show that the concrete trace satisfaction derivation is included
in the abstract tree. In particular in the case of +, the trace satisfaction derivation has
to make a choice whether to pick the left or the right alternative. The abstract tree is
forced to explore both branches. This is where we use the property of t to show that we
preserve the over-approximation.

Proof. On the structure ofH.

S-Success It can only be the case that root(t) = D,m . Success : LSuccess, so we need
to show that β(〈〉) v LSuccess which we have by requirement 6.1.

S-AltLeft We have derivation H1 of δ `D s : c1. It must be the case that t has sub-
trees t1, t2 with root(t1) = D,m . c1 : `1 and root(t2) = D,m . c2 : `2. Now by
the induction hypothesis on H1 and t1 we have that β(s) v `1 and since L is a
complete lattice, we have that β(s) v `1 t `2.

S-AltRight This case is symmetric.

S-Concurrent We have a derivation H1 of δ `D s1 : c1 and H2 of δ `D s2 : c2. It
must be the case that t has sub-trees t1, t2 with root(t1) = D,m . c1 : `1 and
root(t2) = D,m . c2 : `2. Now by the induction hypothesis onH1 and t1 we have
that β(s1) v `1 and similarly for H2 and t2 we have that β(s2) v `2. Now by
requirement 6.3 we have what we require.

S-Sequence This case is similar to S-Concurrent.

S-Template We have a derivation H′ of δ′ `D s : c for a contract template D(f) =

(f [x1, . . . , xn] = c) where δ′ = {x1 7→ Q[[a1]]δ, . . . , xn 7→ Q[[an]]δ}. t has a sub-tree
t′ with root(t′) = D, [[(a1, x1), . . . , (an, xn)]]]m . c : `. By the induction hypothesis
and the soundness requirement for the expression analysis we have what is
required.

52

CHAPTER 6. CONTRACT ANALYSIS

S-Transfer This proof is similar and the result follows from the induction hypothesis
and the soundness requirement (6.4) of the Transfer combinator.

This concludes the proof.

We also want to show that if we perform the analysis with a larger environment, then
the analysis should remain sound. This is to be able to have a practical implementation
of the analysis for recursive contracts with changing environments. This is only a
property of the analysis, and does not have anything to do with the trace satisfaction
semantics. Now we have to do some more work, since we are dealing with possibly
infinite trees.

Like in [Sch95] we define a binary relation �UA⊆ UA × UA as the largest binary
relation satisfying the following properties:

• t �UA t′ if t′ = ∆.

• t �UA t′ if root(t) = D,m . c : `, root(t′) = D,m′ . c : `′, m v m′, ` v `′ and for all
sub-trees i of t there exists a sub-tree j of t′ such that ti �UA t′j .

Informally this is a relation between trees such that if we explore them in the same way,
then it will always be the case that the abstract trace and the abstract environment will
be more precise in t than in t′. For instance the two trees below are related if m v m′

[[P]]]m = ⊥
D,m . Transfer(A1, A2, R, T |P).c : ⊥

�UA

m′′ = [[P]]]m′ 6= ⊥
∆

D,m′′ . c : `

D,m′ . Transfer(A1, A2, R, T |P).c : CTransfer(`,m
′′, A1, A2, R, T)

since ⊥ v a for all a ∈ L. In fact this is also the only place where we lose precision, since
we have the possibility of exploring less of the abstract trees when m is more precise.
This is because whenever m is more precise, we could have that the predicate analysis
can signal unsatisfiability of the predicate.

We can use the relation �UA to state the soundness of widening:

Theorem 6.2. If m v m′, t1, t2 with root(t1) = D,m . c : `1 and root(t2) = D,m′ . c : `2
then t1 �UA t2.

Proof. We will not be super rigorous in proving this theorem, but in the same way as
in [Sch95] can show that the relation on trees is closed, and the only remaining goal is
by induction on c. The induction amounts to examining each rule scheme to verify that
each pair of trees are related by �UA . In most cases there is only one way to construct
the two trees, and the result will simply follow by the monotonicity of the combinators.

• Case c = Success: There is only one way to construct these two trees, and
LSuccess v LSuccess.

• Case c = Failure: There is only one way to construct these two trees, and ⊥ v ⊥.

• Case c = c1 + c2: This follows since t is monotone.

• Case c = c1 ‖ c2: This follows since C‖ is required to be monotone.

53

CHAPTER 6. CONTRACT ANALYSIS

• Case c = c1; c2: This follows since C; is required to be monotone.

• Case c = f(a1, . . . , an): This follows since abstract expression evaluation is mono-
tone.

• Case c = Transfer(A1, A2, R, T |P).c: We have 4 ways to construct the two trees in
this case.

1. When `1 := ⊥ and `2 := ⊥we have that ⊥ v ⊥.

2. When `1 := ⊥ and `2 := CTransfer(`2,m
′, A1, A2, R, T) we have that ⊥ v `2.

3. When `1 := CTransfer(`1,m,A1, A2, R, T) and `2 := ⊥ is vacuously true due to
the requirements of the predicate analysis that a predicate now satisfiable in
a large environment is definitely not satisfiable in a smaller environment.

4. When `1 := CTransfer(`2,m
′, A1, A2, R, T) and `2 := CTransfer(`2,m

′, A1, A2, R, T)
we have the statement of the theorem due to the monotonicity requirement of
the predicate analysis and the monotonicity of CTransfer combinator (require-
ment 6.6).

This concludes this proof, and we can say that every possible way to construct these
two trees keeps `1 v `2 which is exactly what we need.

6.3.4 Computing a least solution

Now that we have a sound abstract semantics for CSL we will describe how to compute
an analysis for a contract specification. For a contract specification c with templates D
we have a tree t ∈ UA such that root(t) = D,> . c : `.

In the case of a contract where we can write an finite abstract semantics tree (this is
true in cases without recursion, or when the predicate analysis can infer termination),
we can compute an analysis trivially by just unfolding the tree and reading off `.

Example 6.3. For the contract c = Success + Transfer(A1, A2, R, T |P).Success we can
easily write the analysis as

∅,> . Success : LSuccess

[[P]]]> = m ∅,m . Success : LSuccess

∅,> . Transfer(A1, A2, R, T |P).Success : `

∅,> . c : LSuccess t `

with ` = CTransfer(LSuccess,m,A1, A2, R, T). It is easy to see that we can do this with all
contracts without recursion.

For a contract with recursion the abstract semantics tree is possibly infinite, and we
cannot simply unfold the tree to find a solution in finite time. Now if there on every
infinite path is a node where we analyze the same contract with the same environment
we can use a standard fixed point algorithm (with widening in the case of infinite
abstract domains) to solve for the desired value. We can do this computation since
we required all the combinators to be monotone. We will show how to do this by an
example.

Example 6.4. In an environment D = {f 7→ f [] = Success + f()} we want to analyze
c = f(). This not a very productive contract, but we want to be able to analyze all contracts.

54

CHAPTER 6. CONTRACT ANALYSIS

Our intuition is that this contract should have the behaviour LSuccess, since only the empty
trace satisfies this contract.

The idea is to return ⊥ for the analysis of any repeating node in the tree for the first iteration.
This means that the second time we encounter f() with environment >, we return ⊥.

D,> . Success : LSuccess D,> . f() : ⊥
D,> . Success + f() : LSuccess t ⊥

D,> . f() : LSuccess

Now to reach a fixed point we now return LSuccess for the second encounter of f() in the second
iteration of the algorithm.

D,> . Success : LSuccess D,> . f() : LSuccess

D,> . Success + f() : LSuccess t LSuccess

D,> . f() : LSuccess

We have reached a fixed point, so the analysis of c is LSuccess. This corresponds to finding a
least solution of ` to the equation ` = LSuccess t ` where we can easily check that LSuccess is a
solution.

We still have a problem though. Consider the recursive contract

letrec f[x] = Success + Transfer(a1, a2, r, t | true).f(x-1) in f(0)

Now if we try to analyze this contract we see that there is an issue. If we keep track of
the possible values of x, we always analyze the body of f in a different environment.
The first time with {x 7→ {0}} then with {x 7→ {−1}} and so on. At some point when
unfolding the tree we will see the infinite path:

D, {x 7→ {0}} . f(x− 1) : ?

...
D, {x 7→ {−1}} . f(x− 1) : ?

...
D, {x 7→ {−2}} . f(x− 1) : ?

where we never will have a repeating node. Here we can use environment widening to
force a repetition along the path by widening the entry for x in the abstract environment
to >. We can do this after some fixed number of iterations. It might be when we
encounter the contract for the second time or after some larger n to increase the precision
of the analysis.

There is still one catch though. Whenever we have an infinite abstract domain like
intervals, we are not guaranteed that the fixed point algorithm used in the example will
terminate. It might be the case since we have a Transfer in the recursive contract that say
adds something to the resulting interval, and does it for every iteration. Here we can
apply the widening operator between iterations of the fixed point algorithm by using
the iteration strategy fnO from Section 5.3.1.

Note that the complexity of the analysis depends heavily on the precision of the
predicate analysis. It is fair to assume that the more complicated the expression language
is, the harder it is to analyze. Furthermore, if we are very precise, we might be able
to infer termination of a contract, but also if we are precise, we might have to employ
environment widening to ensure termination of the analysis. There are trade-offs in
designing both a predicate analysis and an expression language for CSL.

55

CHAPTER 6. CONTRACT ANALYSIS

6.4 An abstract interpreter

We are going to sidestep from the formal treatment of the analysis a little bit and look at
how to implement an abstract interpreter that finds the least solution for any abstract
semantics tree of the CSL analysis. We are going to use the approach taken by Darais,
Labich, Nguyen and Van Horn [Dar+17] where they implement an abstract interpreter
for a higher order functional language in Scheme. We use Haskell instead of Coq to
not have to prove termination for the abstract interpreter. We will assume that we have
all the abstract operations available (CSeq, CTrans, etc.) and that we can perform lattice
operations (joining, widening).

We start by building a naive interpreter that will unfold the abstract semantics trees
described in the previous section. The interpreter will read the abstract environment
from a reader monad.

analyze ::
(MonadReader (AEnv Value) m)

⇒ Contract→ m AnalysisResult
...
analyze (Alternate c1 c2) = liftM2 join (analyze c1) (analyze c2)
analyze (Sequence c1 c2) = liftM2 Cseq (analyze c1) (analyze c2)
...

This of course does not terminate in the case of recursive templates. To be able to detect
whether we have encountered a contract before we factor out the recursion, so that we
can check for each recursive call whether we should abort and widen the environment
or use the previously calculated result:

analyze ::
(MonadReader (AEnv Value) m)

⇒ (Contract→ m AnalysisResult)
→ Contract
→ m AnalysisResult

...
analyze f (Sequence c1 c2) = liftM2 Cseq (f c1) (f c2)
...

The rules are for the interpreter are directly translated from the abstract collecting
semantics in Figure 6.5. To detect convergence we construct a map that caches earlier
analysis results, and when we encounter them again we can just return them.

type SolveState a = Map (Contract, AEnv a) AnalysisResult

AEnv a corresponds to M , and AnalysisResult corresponds to L. We make a monad
that we can read abstract environments and earlier solve states from. We add state that
we can write the result of recently analyzed contracts to.

type AnalysisMonad a = ReaderT (AEnv a) (ReaderT (SolveState a) (State (SolveState a)))

We can use this monad to shortcut the recursion and return the earlier result if we
already computed it. So instead of calling the analyzer recursively we use analyzeCache
to detect convergence before calling analyze by mutual recursion:

analyzeCache :: Contract→ AnalysisMonad Value AnalysisResult
analyzeCache c = do
out ← get; env← ask
case Map.lookup (c, env) out of -- Have we already computed the result?
Just r → return r

56

CHAPTER 6. CONTRACT ANALYSIS

Nothing→ do
cin← askCacheIn
let res = fromMaybe bottom (Map.lookup (c, env) cin) -- Get the old result
modify (Map.insert (c, env) res) -- Update the result cache with the old result
res’ ← analyze analyzeCache c -- Run the analyzer
modify (Map.insertWith widen (c, env) res’) -- Insert the new result and apply widening
return res’

This algorithm performs one step of the fixed point algorithm. We can initialize the
result of all analyses of all contracts in all environments to be ⊥, and then analyze the
contract until we find a fixed point on our lattice. We do with with the fixCache function

fixCache :: Contract→ AnalysisMonad Agent AnalysisResult
fixCache ev c = do
env ← ask
ac’ ←
mlfp

(\ac → do
put Map.empty -- Initialize the result cache
localCacheIn ac (analyzeCache c) -- Update the reader cache
get) -- return updated cache

return (fromMaybe bottom (Map.lookup (c, cache env) ac’))

Here mlfp (monadic least fixed point) will iterate analyzeCache until it finds a fixed
point by swapping out the caches. It initializes the state to be ⊥, and the reader to be the
result of the last iteration by localCacheIn, and then it returns the resulting analyses by
get. mlfp will terminate whenever nothing in the caches changes and we have found a
fixed point.

We can change it to also perform environment widening by checking how many
times we have encountered c with different environments, and we can then widen them
and continue the analysis. We will not describe this here.

A prototype implementation of this can be found in the accompanying code in the
folder csl-impl.

6.5 A general framework for contract analyses

Now that we have defined an abstract analysis for CSL we want to use it as a framework
for defining concrete analyses. We want to infer properties of satisfying traces which is
exactly what the abstract analysis does. Think of L as the set of properties.

Examples of important properties could be:

• Bob never transfers resources to Alice, because export restrictions prohibit him
from doing so.

• Alice is not obliged to send more than what she has available on her bank account
added to her credit limit.

• Charlie does not benefit too much from any series of events satisfying the contract.

It turns out that we can use the abstract collecting semantics of CSL to infer these
properties. By instantiating the lattice, expression analysis and combinators we can get
a specific analysis for CSL. We will now describe two simple instances that compute
something relevant about a contract.

57

CHAPTER 6. CONTRACT ANALYSIS

6.6 Participation analysis

One thing of interest to us is figuring out which agents can participate in a contract. We
are interested in inferring a relation of the parties transferring resources. The intended
meaning of the analysis is that if a pair of agents (a, b) is in the result, there may be a
transfer of resources from a to b in any trace satisfying the contract specification. To
make the interpretation of the result more clear we write (a→ b) instead to emphasize
that it is a transfer from a to b. For the analysis we only track the agent variables in the
abstract environment.

Lp = P(A×A), Mp = V aragent → P(A)

This participation analysis is of course very crude, and in a practical setting a much
more precise statement is needed. We are interested in this only since it demonstrates
the analysis framework very nicely. To be an analysis in the context of the abstract
framework we need to define a representation function. In this case it accumulates all
the agents in the events of a trace.

β(transfer(a1, b1, r1, t1), . . . , transfer(an, bn, rn, tn)) = {(a1, b1), . . . , (an, bn)}

The correctness of the analysis relies on the fact that β is a homomorphism with respect
to append or interleavings and union.

Lemma 6.1. If s1 ++ s2 = s or (s1, s2) s then β(s) = β(s1) ∪ β(s2).

The analysis Success is simple since no one is communicating, so LSuccess = ⊥ = ∅.
For all the contract combinators we just union the results of the subcontracts C; =

C‖ = ∪, since in the case of sequential and parallel composition we know that all the
transfers from both subcontracts will happen.

For Transfer we take all the possible values for the senders and receivers and we
construct the cartesian product. This is exactly the over-approximation of the communi-
cating agents that we are looking for.

CTransfer(l,m, a1, a2, r, t) = l ∪ (m(a1)×m(a2))

Remember that m contains a valid over-approximation of mappings from variables to
sets of agents. We can prove the important correctness criteria pretty easily.

Lemma 6.2. If δ[A1 7→ a1, A2 7→ a2, R 7→ r, T 7→ t] RM m∧β(s) ⊆ l then β(transfer(a1, a2, r, t) s) ⊆
l ∪ (m(A1)×m(A2))

Proof. By the correctness of the abstract environment a1 ∈ m(A1) and a2 ∈ m(A2)
and by the definition of β, β(transfer(a1, a2, r, t) s) = {(a1, a2} ∪ β(s). Now since
(a1, a2) ∈ m(A1)×m(A2) the statement of the lemma follows.

The monotonicity of the combinators is trivial, since union is monotone. The proof for
monotonicity of a Transfer is also pretty easy.

Lemma 6.3. If m v m′ and l ⊆ l′ then l ∪ (m(A1)×m(A2)) ⊆ l′ ∪ (m′(A1)×m′(A2))

Proof. By definition of v for environments and monotonicity of ∪.

We will now show a short example of an analysis of a simple contract.

58

CHAPTER 6. CONTRACT ANALYSIS

6.6.1 Example

Lets look at the escrow contract again:

letrec escrow[trusted, seller, buyer, goods, payment, deadline] =
Transfer(buyer, trusted, payment, _).
(Transfer(seller, buyer, goods, T | T < deadline).
Transfer(trusted, seller, payment, T’ | True).Success

+ Transfer(trusted, buyer, payment, T | T > deadline).Success)

in escrow("3rd", "shop", "alice", 1 bike, 1000 EUR, 2019-09-01)

We will just look at the body of the escrow template. It will be analyzed in an environ-
ment

m = {trusted 7→ {”3rd”}, seller 7→ {”shop”}, buyer 7→ {”alice”}}

if we only consider agent variables. The template environment is D, which we will not
write out. Now if we write up the analysis for the body of escrow, c where the two
alternatives after the first transfer are c1 and c2 that has analyses `1 and `2 respectively.

m′ = [[P]]m
· · ·

D,m′ . c1 + c2 : `1 ∪ `2
D,m . c : (`1 ∪ `2) ∪ {”alice”→ ”3rd”}

And we can continue by calculating the results for c1 + c2 which we will not do here.
At some point we will reach Success in all branches and we will be done. If we had
recursion, we should apply fixed point techniques just like in Section 6.3.4.

6.6.2 Possible improvements

Consider a contract

Transfer(A, B, R, T | true).Transfer(C, D, R’, T’ | C = B ∧ D = A).Success

Then the result of the current analysis will be {(> → >)}meaning that anybody might
transfer resources to anybody which is true. We can say something a bit more precise
though. A possible improvement is introducing an existential for every unknown value
when analyzing a transfer. Then we can identify whenever that variable is matched later.
This can make it possible to make conditional statements like: If Alice is the sender of
the first event, then she is the receiver of the second. This will require a more complex
abstract domain, which we will leave for future work.

6.7 Fairness analysis

An analysis of much more practical interest than participation analysis is fairness
analysis. In fairness analysis we are interested in analyzing the cost of participating in a
contract for all agents. We will reuse the model of resources described in Section 2.6.

We are in essence trying to approximate the combined transfer of a traceE(t) : A fin−→
R by just looking at the contract specification. For the analysis we choose an abstract
domain Lf = A → IR that abstracts resources into intervals on the real number line.
This means that the property that we are inferring is some bound on the value of a
contract specification for the participating agents. To do this we are going to introduce
the concept of a valuation. A valuation is a function V : R → R that computes some

59

CHAPTER 6. CONTRACT ANALYSIS

real valued measure of a particular resource. This measure is unitless, but one can think
of it as the native currency of the party performing the analysis.

The valuations could vary depending on who performs the analysis. A German
might value 1 EUR at 1 but a Dane might value it at 7.5. Also a customer could value
an item differently than a seller, since there is a different between purchase and selling
price.

To abstract traces onto this domain we are defining a representation function for a
single transfer parameterized by the valuation function V :

β′V (transfer(a1, a2, r, t))

=

{
{a1 7→ [−V (r),−V (r)], a2 7→ [V (r), V (r)]} when a1 6= a2

{a1 7→ [0, 0]} when a1 = a2

which is very similar to the effect of a Transfer defined in Section 2.6, but with intervals
of valuations instead of resources. The representation function for an entire trace s ∈ Tr
will just map with this function and fold with interval addition ⊕.

βV (s) = fold(⊕, {v 7→ [0, 0] | v ∈ V ar},map(β′V , s)).

Example 6.5. Consider the event trace from Section 2.6

s = 〈transfer(a, b, 10 ·DKK, t1), transfer(b, a, 1 · litres of milk, t2)〉

With the valuation {litres of milk 7→ 8,DKK 7→ 1}, then we can calculate

βV (s) = {a 7→ [−2,−2], b 7→ [2, 2]}

assuming that a 6= b.

We are going to extend the valuation function to sets of resources by joining all of them
together.

VL(R) =
⊔
{[V (r), V (r)] | r ∈ R}.

The abstract environment will at least require a mapping from agent and resource
variables to sets of agents or resources.

Mf = V aragent ∪ V arresource → P(A) ∪ P(R)

6.7.1 Combinators

We are now going to describe the combinators that will instantiate the abstract analysis
framework. The analysis of the successful contract maps every agent to the singleton
interval of 0 representing that nothing is transferred.

LSuccess = {a 7→ [0, 0] | a ∈ A}

This is different to ⊥, where every agent would map to the empty interval. This choice
makes intuitive sense, since no transfers will leave any agent with a net gain of 0.

In the case of sequential and parallel composition we know that both subcontracts
are satisfied, so we can add all the intervals together making the analysis precise, so

60

CHAPTER 6. CONTRACT ANALYSIS

C; = C‖ = ⊕. We do not track the order of transfers, so the combinators are the same
for ; and ‖.

In the correctness of fairness analysis we again need a result relating appendings,
interleavings and ⊕

Lemma 6.4. If s1 ++s2 = s or (s1, s2) s then for all valuations V , β(s) = βV (s1)⊕βV (s2).

Now the analysis of the transfer adds intervals for senders and receivers. There is a
small catch though. If there is exactly one sender or receiver for the event, we can be
precise. Otherwise we will have to widen to interval to include [0, 0], since we do not
know the actual agent. We make a helper function to a transfer of an abstract resource
with respect to a single abstract agent:

VTransfer(A,R) =

∅ when A = ∅
{a 7→ VL(R)} when A = {a}
{a 7→ [0, 0] t VL(R) | a ∈ A} otherwise

We can then use this to define the analysis of the Transfer with different signs for senders
and receivers.

CTransfer(l,m, a1, a2, r, t) = l ⊕ VTransfer(m(a1),−m(r))⊕ VTransfer(m(a2),m(r))

We state the correctness requirement for this combinator by just substituting the defini-
tions into the abstract framework.

Lemma 6.5. If δ[A1 7→ a1, A2 7→ a2, R 7→ r, T 7→ t] RM m ∧ β(s) v l then

β(transfer(a1, a2, r, t) s) v l ⊕ VTransfer(m(a1),−m(r))⊕ VTransfer(m(a2),m(r))

We will not prove this lemma here, but we will do it later in the Coq formalization.
Now we have what is required for this to be an analysis of CSL, and we can safely say
that if we satisfy the specification with these combinators, then we will have a sound
approximation of the combined transfer of a trace.

6.7.2 Example

One can verify pretty easily that we can achieve the analysis of the escrow contract
claimed in the introduction. It is simply a matter of calculating the result from the
abstract tree since it contains no recursion. We also look at the recursive contract:

letrec f[] =
Transfer("alice", A, 1 USD, T | A = "bob" ∨ A = "charlie").(Success + f())

in f()

We analyze this contract with the valuation map V = {USD 7→ 6}. By writing up the
abstract tree we find that we need to solve the following equation for `:

` = (LSuccess t `)⊕ {”alice” 7→ [6, 6], ”bob” 7→ [−6, 0], ”charlie” 7→ [−6, 0]}

To try to solve this we apply the standard fixed point algorithm by setting `0 = ⊥ and
iterating.

`1 = (LSuccess t `0)⊕ {”alice” 7→ [6, 6], ”bob” 7→ [−6, 0], ”charlie” 7→ [−6, 0]}
= {”alice” 7→ [6, 6], ”bob” 7→ [−6, 0], ”charlie” 7→ [−6, 0]}

61

CHAPTER 6. CONTRACT ANALYSIS

`2 = (LSuccess t `1)⊕ {”alice” 7→ [6, 6], ”bob” 7→ [−6, 0], ”charlie” 7→ [−6, 0]}
= {”alice” 7→ [6, 12], ”bob” 7→ [−12, 0], ”charlie” 7→ [−12, 0]}

`3 = (LSuccess t `2)⊕ {”alice” 7→ [6, 6], ”bob” 7→ [−6, 0], ”charlie” 7→ [−6, 0]}
= {”alice” 7→ [6, 18], ”bob” 7→ [−18, 0], ”charlie” 7→ [−18, 0]}

This will never terminate and find a fixed point due to the infinite abstract domain of
intervals. We can apply point-wise widening to get a sound over-approximation

`≈ = {”alice” 7→ [6,∞], ”bob” 7→ [−∞, 0], ”charlie” 7→ [−∞, 0]}.

We can check that it is a solution by substituting in into the original equation

`≈ = (LSuccess t `≈)⊕ {”alice” 7→ [6, 6], ”bob” 7→ [−6, 0], ”charlie” 7→ [−6, 0]}
= {”alice” 7→ [6,∞], ”bob” 7→ [−∞, 0], ”charlie” 7→ [−∞, 0]}

6.7.3 Possible improvements

As described in Section 2.6, transfers have a net effect of 0. We do not exploit this in the
formulation of fairness analysis described here. It would be very beneficial to be able
to infer relationships between the amount of resources transferred for different agents.
We will explore this a little bit in this section, but it will be fairly informal, and we will
leave out a lot of technicalities.

Given that the transfers are two-way, it makes sense to have a domain that can
relate two variables. In our case variables will be the expected gain of one agent in
a contract. We write eg(a) for the expected gain for agent a ∈ A. For one particular
transfer transfer(a, b, r, t) we know that

eg(a) = −V (r) and eg(b) = V (r)

Therefore also that
eg(a) + eg(b) = 0

This establishes a relation between a and b. We would like to exploit this somehow
in the analysis of CSL. In the analysis of the transfer we now have to give a better
implementation of CTransfer. We know that from the abstract environment we get a set of
possible agents for both the sender and the receiver of the event:

m(A1) = {a1, . . . , an},m(A2) = {b1, . . . , bn′}

We can also calculate a bound VL(m(R)) = [x, x′] for the valuation of the resource. We
can then write inequalities

eg(bi) ≤ x′, eg(bi) ≥ 0

and
eg(ai) ≥ −x′, eg(ai) ≤ 0

which are essentially what we also get with the intervals in the analysis. Similarly to
the analysis we can make this more precise in the case where there is only one possible
agent for each variable in the Transfer.

62

CHAPTER 6. CONTRACT ANALYSIS

Now we can also exploit the fact that only one of the possible agents can be the
sender and only one can be the receiver in the satisfying trace:

eg(a1) + . . .+ eg(an) + eg(b1) + . . .+ eg(bn′) = 0

An abstract domain that can represent such constraints is the domain of convex poly-
hedra [CH78]. We will not explore this further, but we will leave it as future work to
phrase fairness analysis with a more complex domain.

63

Chapter 7

Contract analyses in Coq

In this chapter we will briefly describe how we verified the correctness of the analysis
specification in Coq using the mechanization of CSL described in Chapter 4. We have
mechanized the abstract collecting semantics and mechanized the participation analysis
and the fairness analysis. For the two concrete analyses, we have also mechanized some
abstract domains which is described in Appendix B.2.

7.1 Generic analysis

To encode the abstract collecting semantics for contract analyses we use type classes to
specify the requirements for an analysis of CSL. We start by defining a type class for
the predicate analysis that also includes the analysis of arguments to templates. For the
predicate analysis we require a SetLattice to map variables to. We will show some of
the requirements here an an example. The remaining requirements are exactly the ones
specified in Section 6.2.

Class PredicateAnalysis (A : ty → Type) ‘(L : SetLattice A) := {
arg_eval : ∀ ∆ τ, exp ∆ τ → hlist A ∆ → A τ;

aenv_correct {∆} (δ : env ∆) (m : hlist A ∆) :=
∀ τ (x : member τ ∆), In (hget δ x) (hget m x);

arg_env_aenv := fix F {∆ ts} (m : hlist A ∆) (ae : arg_env ts ∆) : hlist A ts :=
match ae with
| HNil ⇒ HNil
| HCons e ae’ ⇒ HCons (arg_eval e m) (F m ae’)
end;

analysis : ∀ ∆,
hlist A (new_var ∆) → exp (new_var ∆) Bool → option (hlist A (new_var ∆));

analysis_Some : ∀ ∆ (p : exp (new_var ∆) Bool) m m’ δ,
aenv_correct δ m ∧ analysis m p = Some m’ ∧ expDenote p δ = true → aenv_correct δ m’;

(* Remaining requirements *)
}

The parameter A : ty → Type determines the abstract domain type of variables. A t is
the abstract type of variables of type t. The hlist A ∆ in the definitions is the abstract
environment that encodes M = V ar → A. Note that with arg_env_aenv we provide an
implementation for evaluating all arguments to a template application from the instance

64

CHAPTER 7. CONTRACT ANALYSES IN COQ

function arg_eval that just evaluates one. aenv_correct is the encoding of the relation
RM . We can now prove a lemma about the correctness of evaluating all the arguments
to a template just from the type class specification:
Lemma arg_env_aenv_correct A ‘{P : PredicateAnalysis A} :
∀ ∆ (δ : env ∆) ts (ae : arg_env ts ∆) (m : hlist A ∆),
aenv_correct δ m →
aenv_correct (arg_envDenote δ ae) (arg_env_aenv m ae).

This definition of the predicate analysis is nice, since it makes it possible just to specify
exactly what we need, and the rest can be left generic.

For the analysis specification we also create a type class that specifies the require-
ments of a CSL analysis. This requires an abstract domain for traces L and a predicate
analysis over the abstract domain of variables A. The requirements are exactly the same
as in Section 6.3.2.
Class CSLAnalysis (L : Type) (A : ty → Type) ‘(Lattice L) ‘(PredicateAnalysis A) := {

β : trace → L;

C_transfer : ∀ ∆, hlist A (new_var ∆) → L → L;

β_transfer : ∀ ∆ (δ : env ∆) (m’ : hlist A (new_var ∆)) l e t,
aenv_correct (addEvent e δ) m’ →
Incl (β t) l → Incl (β (cons e t)) (C_transfer m’ l);

monotone_C_transfer : ∀ ∆ (m m’ : hlist A (new_var ∆)) l l’,
aenv_Incl m m’ → Incl l l’ → Incl (C_transfer m l) (C_transfer m’ l’)

(* Remaining requirements *)
}

Here aenv_Incl is from the PredicateAnalysis class and Incl is from the Lattice class.
We can use this type class definition to encode the abstract collecting semantics

from Figure 6.5. Like for abstract semantics trees we want to describe both finite and
infinite derivations and like the definition for infinite trees in Section 3.2, we use the
keyword CoInductive to include both finite and infinite derivations using the rules in
the definition. We just show one case, and the rest are very similar to the rules on paper.
CoInductive csl_analysis L A ‘(CA : CSLAnalysis L A) :
∀ Γ ∆, contract Γ ∆ → template_env Γ → hlist A ∆ → L → Prop :=
(* Definitions for Success, Failure, Sequence, Alternative and Concurrent *)
| TransferASucc : ∀ Γ ∆ (D : template_env Γ) (m : hlist A ∆)

(m’ : hlist A (new_var ∆)) c (p : exp (new_var ∆) Bool) l,
analysis (add_event_aenv m) p = Some m’ →
csl_analysis CA c D m’ l →
csl_analysis CA (transfer p c) D m (C_transfer m’ l)

(* Rest of definitions *)

In the case for Transfer where the predicate analysis does not return⊥, we use add_event_aenv

to extend the abstract environment with > for variables that are bound. We then use
the C_transfer function to combine the result of the predicate analysis with the result of
analyzing the subcontract. Since we require a type class instance for the CSL analysis,
we have access to all the combinators and definitions about the predicate analysis as
well.

We can prove that the co-inductive interpretation of the analysis given the generic
analysis definition is sound with respect to the trace satisfaction semantics. This is
essentially the same theorem as Theorem 6.1 and it is also proven by induction on the
trace satisfaction derivation:

65

CHAPTER 7. CONTRACT ANALYSES IN COQ

Theorem csl_analysis_sound L A ‘(CSLAnalysis L A) :
∀ Γ ∆ (D : template_env Γ) (δ : env ∆) (m : hlist A ∆) (c : contract Γ ∆) l s,
aenv_correct δ m ∧ csl_analysis c D m l ∧ csat δ D t c → Incl (β t) l.

We also prove that environment widening is sound, which corresponds to Theorem 6.2.
There is one catch though. Co-induction is not widely used in the Coq community, so
we had some problems proving this. We therefore only proved a weaker version by
induction using the least fixed point interpretation of the rules instead (achieved by just
replacing CoInductive with Inductive). This change means that the theorem is only valid
for finite derivations of the abstract collecting semantics. This essentially means that
the result is only valid for non-recursive contracts, or contracts where the expression
analysis can infer termination.

Theorem env_widening_sound L A ‘(CSLAnalysis L A) :
∀ Γ ∆ (D : template_env Γ) (m m’ : hlist A ∆) (c : contract Γ ∆) s s’,
aenv_Incl m m’ ∧ ind_csl_analysis c D m s ∧ ind_csl_analysis c D m’ s’ → Incl s s’.

To prove the theorem using co-induction one would have to define the relation �UA
co-inductively and then show using the cofix tactic that if aenv_Incl m m’ then the relation
holds for abstract derivations in those environments. This is a variation on bi-similarity
where we require inclusion instead of equality to hold at every node in the abstract tree.
But where we in the case of bi-similarity of trees only needed two definitions in the
co-inductive relation (one for leaves and one for nodes), we need to have one for every
syntax constructor and combinations for the different ways of combining analyses for
transfers.

In general the approach with type classes seems very nice, since we only need to
focus on the important steps when defining a new analysis for CSL. We do not need to
set up the entire machinery for every analysis. We will now briefly explain the different
instantiations of the type classes that defines participation analysis and fairness analysis.

7.2 Analysis instances

The previous generic analysis is useless unless we show that there are implementations
of the type classes. We now provide instances for the different type classes, and we start
with the predicate analysis.

7.2.1 Predicate analysis

We claimed earlier that the identity analysis of predicates should be a valid analysis.
We can define it as an instance of the predicate analysis class. We define the evaluation
function for arguments by just looking up variables and abstracting literals. For all other
expressions we just return >.

Instance id_predicate_analysis_abstract_set :
@PredicateAnalysis abstract_set _ abstract_set_setlattice := {
arg_eval {∆ t} (e : exp ∆ t) (m : value_map ∆) := match e with
| Var v ⇒ hget m v
| @Lit _ t l ⇒ ActualSet (singleton (tyDenote_dec_eq t) l)
| _ ⇒ FullSet
end;

analysis _ m _ := Some m
}.
(* Correctness proofs go here *)

66

CHAPTER 7. CONTRACT ANALYSES IN COQ

We have also started implementing the predicate analysis from Section 6.2.2. We have
had some challenges with this given the dependently typed syntax. We want to define a
function

Definition possibleValues ∆ τ (old : value_map ∆) (e : exp ∆ τ) : option (value_map ∆).

that given a abstract environment and an expression returns the possible mappings of
variables as a more refined environment. This function then traverses the syntax of the
predicate and unifies equalities using the function

Definition unify τ ∆ (old : value_map ∆) : exp ∆ τ → exp ∆ τ → option (value_map ∆).

unify unifies values to variables and variables to variables using the rules in Figure 6.3.
We have not completed the correctness proofs of these functions, mostly because of
problems using the intrinsically typed syntax. In particular it is proving the following
theorem that causes problems:

Lemma put_intersect_var_var : ∀ ∆ (δ : env ∆) (m : value_map ∆) τ (v0 v1 : member τ ∆),
value_map_correct δ m →
hget δ v0 = hget δ v1 →
value_map_correct δ (hput (intersect_abstract_set (hget m v0) (hget m v1))

(hput (intersect_abstract_set (hget m v0) (hget m v1)) m v0) v1).

Here we are given a sound environment and two variables that have that same value
in the concrete environment. Then updating these two values to be their intersection
should also be sound. Given that we think that this theorem holds, then the unification
analysis is also sound. We leave it as future work to complete the correctness proof of
this analysis.

7.2.2 Participant analysis

For the participation analysis we want an abstract domain of agent pairs. We start by
defining a type for values that can be unknown:

Inductive abstract_value τ : Type :=
| AnyValue : abstract_value τ
| ActualValue : tyDenote τ → abstract_value τ.

It is either unknown, or it is a value from the expression language. We use this definition
to define pairs of abstract agents:

Definition abstract_agent_pair := (abstract_value Agent * abstract_value Agent)%type.

We can use abstract pairs to encode sets like {(a, b) | b ∈ A} as {(a, AnyValue)}. Inclusion
is now a bit more complex since we have to check whether these special values are in
there. We can define a lattice instance for pairs of abstract agents:

Instance aap_set_lattice : Lattice (set abstract_agent_pair) :=
{ top := singleton dec_eq_aap (AnyValue, AnyValue);
bot := empty_set _;
Incl := aap_set_Incl;
join := set_union dec_eq_aap

}.

We can reuse the standard definition of set union, but we have defined a new notion of
inclusion for sets of abstract agents to check if one or two agents in a pair is unknown.
The encoding of sets with abstract values also gives us a nice definition for >, namely
the set of abstract pairs {(>,>)}.

67

CHAPTER 7. CONTRACT ANALYSES IN COQ

For the actual analysis instance, the definition of β is just a fold that extracts agents
and adds them to the set. We prove that this function is a homomorphism with respect
to both interleavings and appendings.
Lemma β_append : ∀ t1 t2 t l1 l2,

appends t1 t2 t → aap_set_Incl (β_participation t1) l1 ∧ aap_set_Incl (β_participation t2) l2 →
aap_set_Incl (β_participation t) (set_union dec_eq_aap l1 l2).

Lemma β_interleave : ∀ t1 t2 t l1 l2,
interleave t1 t2 t → aap_set_Incl (β_participation t1) l1 ∧ aap_set_Incl (β_participation t2) l2 →
aap_set_Incl (β_participation t) (set_union dec_eq_aap l1 l2).

For Transfer we write the definition of CTransfer exactly as on paper. Note that the
mechanization uses De Bruijn indices, so A1 corresponds to HFirst, and A2 corresponds
to HNext HFirst:
Definition transfer_analysis ∆ (m : value_map (new_var ∆)) l :=
set_union dec_eq_aap (cross (hget m HFirst) (hget m (HNext HFirst))) l.

For correctness, we prove that it is correct with respect to the representation function.
This is exactly the statement of Lemma 6.2.
Lemma transfer_correct ‘{@PredicateAnalysis _ _ abstract_set_setlattice} :
∀ ∆ (δ : env ∆) (m’ : value_map (new_var ∆)) l e t,

aenv_correct (addEvent e δ) m’ →
aap_set_Incl (β_consent t) l →
aap_set_Incl (β_consent (e :: t)) (transfer_analysis m’ l).

We also prove that is is monotone with respect to both the environment and the subcon-
tract. This is exactly the statement of Lemma 6.3.
Lemma transfer_analysis_monotone ‘{@PredicateAnalysis _ _ abstract_set_setlattice} :
∀ (∆ : list ty) (m m’ : value_map (new_var ∆)) l l’,
aenv_Incl m m’ → Incl l l’ → Incl (transfer_analysis m l) (transfer_analysis m’ l’).

This is a very technical proof that has a lot of cases due to the definition of abstract sets.
This contrast a paper proof that is almost trivial.

For the definition of the analysis, we only require that the predicate analysis operates
on power sets for agents, but for simplicity we just say that all of them are abstract sets.
Instance participant_analysis ‘{P : @PredicateAnalysis _ _ abstract_set_setlattice} :
CSLAnalysis aap_set_lattice P := {
β := β_consent;
L_succ := bot;
C_par := join; C_seq := join;
β_transfer := transfer_analysis;
β_transfer := transfer_correct;
β_par := β_interleave;
β_seq := β_append;
monotone_C_par := participant_join_monotone;
monotone_C_seq := participant_join_monotone;
monotone_C_transfer := transfer_analysis_monotone

}.

This instance declaration proves along with csl_analysis_sound and env_widening_sound

that the participation analysis is sound.

7.2.3 Fairness analysis

For the fairness analysis we start by defining the abstract domain that the analysis is
performed on. Just like in the definition on paper it is a map from agents to intervals.
We describe this as a function from agent values to intervals:

68

CHAPTER 7. CONTRACT ANALYSES IN COQ

Definition fairness_result := tyDenote Agent → interval.

Now we have an automatic lattice instance by combining the function lattice with the
interval lattice. Note that we use integers instead of real numbers, because the support
in Coq is much better. This is mainly a technicality. For now we define the valuation
simply as a function from resources to integers parameterized by a direction:

Definition valuation (v : tyDenote Resource) (d : direction) : Z.

The direction determines whether to value the resource as a sender or a receiver

Inductive direction := Sender | Receiver.

The representation function is a function from traces to fairness results and is simply
implemented as a right fold:

Definition β_fairness (t : trace) : fairness_result.

It uses addition on fairness results defined as element-wise addition:

Definition add_fr (f1 f2 : fairness_result) : fairness_result :=
λ a ⇒ plus_interval (f1 a) (f2 a).

And the effect of a single transfer as a fairness result corresponding to β′V in the paper
description:

Definition ev_to_fr (e : event) : fairness_result.
match e with
| Event a1 a2 r _ ⇒
λ a ⇒ if String.eqb a1 a2 then singleton_interval 0 else

if String.eqb a a1 then singleton_interval (valuation r Sender) else
if String.eqb a a2 then singleton_interval (valuation r Receiver) else
singleton_interval 0

end.

We provide the basis for the analysis, LSuccess, which is the fairness result where all
agents map to [0, 0]. This is the analysis of Success:

Definition success_fr : fairness_result := λ _ ⇒ singleton_interval 0.

The combinators for + and ‖will just be add_fr, so we prove that for both append and
interleave, β is a homomorphism with respect to add_fr:

Lemma β_fairness_appends_add_eq : ∀ (t1 t2 t3 : trace) (a : tyDenote Agent),
appends t1 t2 t3 →
∀ a, eq_interval ((β_fairness t3) a) ((add_fr (β_fairness t1) (β_fairness t2)) a).

Lemma β_fairness_interleaves_add_eq : ∀ (t1 t2 t3 : trace) (a : tyDenote Agent),
interleave t1 t2 t3 →
∀ a, eq_interval ((β_fairness t3) a) ((add_fr (β_fairness t1) (β_fairness t2)) a).

Note that we have the required property of the representation function since eq_interval

implies Incl_interval.
Now for the analysis of the Transfer, we translate the definition of VTransfer almost

directly. The only change is that we include the direction of the transfer.

Definition value_transfer
(sr : abstract_set Resource) (sa : abstract_set Agent) (d : direction) : fairness_result.

This definition is surprisingly complicated since we are dealing with an abstraction of
finite sets, so there are a lot of cases to cover.

We now have the building blocks to analyze Transfer. Remember that for a

Transfer(A1, A2, R, T |P).c,

69

CHAPTER 7. CONTRACT ANALYSES IN COQ

A1 is encoded as HFirst and A2 as HNext HFirst and so forth. We use the previous
function to value the transfer both for possible senders and receivers:

Definition transfer_analysis ∆ (m : value_map (new_var ∆)) : fairness_result :=
let a1 := hget m HFirst in
let a2 := hget m (HNext HFirst) in
let r := hget m (HNext (HNext HFirst)) in
add_fr (value_transfer r a1 Sender) (value_transfer r a2 Receiver).

We prove the required correctness statement

Lemma transfer_analysis_correct : ∀ ∆ e (δ : env ∆) (m’ : value_map (new_var ∆)) a,
value_map_correct (addEvent e δ) m’ →
Incl_interval (ev_to_fr e a) (transfer_analysis m’ a).

This proof is particularly nasty due to the enormous number of cases due to the complex
definition of valuations. We have to take care that we distinguish the cases where an
agent can be exactly one agent and all the other cases. In addition to the cases for actual
sets we also have cases for unknowns. We could probably automate large parts of the
proof, but we did not have time to explore it.

For monotonicity of the transfer, we want to prove the following lemma:

Lemma value_transfer_monotone : ∀ sa sa’ sr sr’ d a,
abstract_set_Incl sa sa’ →
abstract_set_Incl sr sr’ →
Incl_interval (value_transfer sr sa d a) (value_transfer sr’ sa’ d a).

But we did not manage to complete it due to time constraints. Just like for transfer_analysis_correct,
we have a very large number of cases to prove and a lot of them are manual due to
having to work with eq_interval instead of regular equality in Coq.

With (almost) all the proofs completed, we can then provide an instance of the
analysis framework for fairness analysis:

Instance fairness_analysis ‘{P : @PredicateAnalysis _ _ abstract_set_setlattice } :
CSLAnalysis (@fun_lattice (tyDenote Agent) interval _) P :=
{
β := β_fairness;
L_succ := success_fr;
C_par := add_fr; C_seq := add_fr;
C_transfer {∆} m l := add_fr (transfer_analysis m) l

}.
(* Proofs for correctness using the lemmas above *)
Defined.

This concludes the mechanization of the generic analysis framework and the two
analyses. By providing class instances for the CSLAnalysis class we prove the correctness
of both participation and fairness analysis.

70

Chapter 8

Discussion

In this chapter we are going to discuss to what degree we reached the objectives of the
thesis. We are then going to discuss related work, and in the end suggest directions for
future work.

8.1 Conclusion

The primary objective of this thesis was to build a theoretical framework necessary for
the formal analysis of digital contracts. To achieve this we planned to do three things:

1. Mechanize the formal semantics of CSL using a proof assistant.

2. Build a theoretical framework for formal analysis of CSL.

3. Use the mechanized semantics of CSL to verify the correctness of the analysis
method.

We achieved all these things to some degree, and we will now evaluate how well we
reached the different objectives separately:

8.1.1 Mechanization of CSL semantics

We managed to complete the mechanization of the syntax and most of the semantics.
The mechanization of CSL in Coq helped us figure out that the originally presented
control semantics for CSL was not actually complete as originally stated in the paper.
This indicates that it is somehow easier to fool a human that the Coq proof checker. This
was a example of why proof assistants should be pervasive in all of computer science to
give us confidence that proofs actually hold.

The choice of an intrinsic encoding for the mechanization seemed like a good idea,
since the well-typedness of contracts carried all the way through to the analyses. This
was very nice. Working with the intrinsic typed syntax was not equally pleasant every-
where, and especially pattern matching on dependently typed syntax is complicated in
Coq. This made the analysis of expressions a bit hard to express.

Mechanizing the operational semantics of CSL was not strictly necessary for verify-
ing the analysis, but we did it to “kick the tires” of the mechanization and make sure
that it was actually useful for proving properties before using it to verify the analyses.

71

CHAPTER 8. DISCUSSION

8.1.2 Analysis method for CSL

We find the abstract collections semantics elegant and it seems to capture some of the
properties of CSL contracts that we are interested in. We have intentionally left the
implementation of the analyses very open, and only stated what is necessary to have a
correct analysis. It is still open whether the analysis method is actually useful for CSL.
We have defined two very simple analyses, but it is not clear how well the analysis
method will capture other properties of interest. The fairness analysis seems novel, and
it is very useful to infer quantitative properties of contracts.

The analysis of expressions needs a lot more work to also capture relationships
between variables, which is crucial for an effective analysis of predicates. A lot of
properties that we are interested in are relational, so inferring relations from predicates
is also quite important. We have intentionally not focused that much on expression
analysis here since in a real implementation of CSL, the expression language is much
more complicated, and the work done here would not be of much use.

One problem with the current algorithm for finding a solution to the analysis is that
we interleave constraint generation and iteration strategy. Another approach might be
to construct the constraints about the result of the analysis, and then use an external
solver to find a solution. This is generally the approach taken by Nielson et al. [NNH99].

8.1.3 Correctness verification of the analysis

The encoding of the generic analysis as a type class in Coq seems very natural. We were
able to specify the requirements of the analysis very concisely, and they were very easy
to compare to those on paper. We had some problems with respect to co-induction in
Coq though, and we think that it is due to the complex encoding with both intrinsic
syntax and type class constraints that interferes with the progress checker of the cofix

tactic, but we will have to explore this further. This left us with a weaker proof of
soundness of environment widening.

There are also some really ugly proofs in the Coq mechanization in the case of
intervals and the valuation of transfers. This is probably mainly due to lack of Coq
programming experience, and more routine in developing large Coq proofs would
probably have helped.

8.2 Related work

There is a huge body of work related to smart contract languages, but we are going to
focus on related work that is relevant for this thesis. We are going to look at previous
work on mechanizing contract languages and analysis of contract languages. We are
also briefly going to look at certified abstract interpretation.

8.2.1 Mechanization of contract languages

KEVM In the work by Hildenbrandt et al. [Hil+18], the formal semantics of EVM, the
virtual machine in the Ethereum blockchain, is defined using the K-framework. From
this mechanized semantics they are able to generate a reference interpreter for EVM
with reasonable performance.

72

CHAPTER 8. DISCUSSION

They are also able to use the specification of the formal semantics to construct a
program verifier that can be used to verify the functional correctness of contracts and
predict their gas usage.

Solidity in F* In this work by Bhargavan et al. [Bha+16] they translate Solidity con-
tracts to F*, a programming language for program verification. They then show that it
is possible to verify run-time safety and functional correctness of contracts in F*, and
they guarantee that the correctness carries through when executed on the blockchain.

Certified Symbolic Management of Financial Multi-party Contracts In this work
by Bahr et al. [BBE15] they present a multi-party contract language and mechanize
it using the Coq proof assistant. Their mechanization allows formalizing domain-
specific analyses and transformations. They also show that they can extract a Haskell
implementation of the DSL from the Coq definitions along with certified contract
management functionalities.

Scilla Scilla by Sergey et al. [SKH18] is an intermediate language for verified smart
contracts. It models contracts as communicating automata. The automata makes
transitions based on incoming messages.

Their main idea is that any in-contract computation does not involve any other
parties. It is in some sense a pure computation. This distinction makes it possible to
separate communication and computation and therefore make analysis and verification
much simpler.

They leave their expression language free, and do not settle on any specifics. They
disallow looping, but plan to support well-founded recursion to be able to prove
termination statically. They have mechanized Scilla in Coq by a shallow embedding,
where the language of in-contract computation is just Gallina (from Coq). They then
translate Scilla contracts into Coq and verify properties of contracts manually.

Michelson The smart contract language of the Tezos blockchain [Goo14] has a mech-
anization in Coq1. The purpose of this mechanization is to prove properties of actual
smart contracts in Coq. This is very similar to the approach of Scilla.

Plutus Core For the Cardano blockchain, their smart contract language Plutus com-
piles into Plutus Core, which is based on System Fω. Plutus Core has a full mechanization
in Agda2 where they mechanize meta-theorems about progress and preservation.

Towards a Smart Contract Verification Framework in Coq In this work by Annenkov
and Spitters [AS19] they explore an approach for verification of Oak smart contracts
for the Concordium blockchain. They have developed a framework for developing the
meta-theory of the smart contract language using a deep embedding and reasoning
about the correctness of concrete contracts by a shallow embedding.

1https://gitlab.com/nomadic-labs/mi-cho-coq
2https://github.com/input-output-hk/plutus/tree/master/metatheory

73

https://gitlab.com/nomadic-labs/mi-cho-coq
https://github.com/input-output-hk/plutus/tree/master/metatheory

CHAPTER 8. DISCUSSION

8.2.2 Analysis of contract languages

Composing contracts In this seminal work by Jones et al. [Jon01] that CSL is based on,
they translate compositional contracts to value processes. Value processes are partial
functions from time to a random variable of some domain A. The details are rather
math-heavy, but the idea is that this random variable represents the value of the contract
at some time in the future. We see this as an automatic analysis method. This analysis is
in use in the pricing and life-cycle management part of the LexiFi product3 which is a
portfolio management system for financial contracts.

Quantitative analysis of smart contracts In this work by Chatterjee et al. [CGV18],
they provide a simplified programming language for smart contracts which can be
translated to Solidity contracts. They then define a translation from smart contracts
to state-based games. They use this formulation of contracts as games to analyze the
expected payoff of participating in a contract. This in not unlike the fairness analysis
that we have developed for CSL.

Static analysis of Ethereum contracts Due to the large number of security problems
with Ethereum smart contracts, there has been a lot of work on static analysis of
Ethereum smart contracts.

Luu et al. [Luu+16] developed a static analysis tool based on symbolic execution to
flag possible security vulnerabilities in Ethereum smart contracts. Their tool flagged
almost half of the contracts deployed at the time as vulnerable including some very well
known vulnerable contracts.

Grossman et al. [Gro+17] developed an analysis to detect non-modular callbacks
in Ethereum and shows that it could have been used to detect problems wrt. the DAO
hack where callbacks were exploited to steal 150M $ in Ether.

Because of the unintuitive semantics of Ethereum smart contract, a lot of work has
been put into verifying safety properties of contracts, and not into analysis of qualitative
properties.

8.2.3 Certified abstract interpretation

Verasco In this major work by Jourdan et al. [Jou+15], they implement a static analyzer
for C based on abstract interpretation in Coq. They reuse the formally verified C
semantics from the CompCert project. They implement a large selection of advanced
abstract domains, and prove the soundness of the analyzer with respect to the CompCert
C semantics.

Certified Abstract Interpretation with Pretty-Big-Step Semantics In this work by
Bodin et al. [BJS15] they develop certified abstract interpretation of an imperative
language also based on the work of Schmidt [Sch95]. They use pretty-big-step semantics
which is a variant of big-step semantics that aims to capture diverging programs. They
also mechanize their work in Coq and prove soundness of their abstract interpreter.

3https://www.lexifi.com/

74

https://www.lexifi.com/

CHAPTER 8. DISCUSSION

8.3 Future work

In this section we highlight 5 directions for future work. Some of them are theoretical
and some of them are more practical.

8.3.1 Improvements of the abstract domains

As we hinted in the description of both of the concrete analyses, we are not as precise as
we could be. There are domains which can express relationships between objects, so
that we can make conditional statements about contracts like: “If Alice pays x dollars,
then Bob will have to pay at least 2x dollars to the contract”. We would like to explore
the possibility of extending the analyses that we have defined to more complex domains
that are more precise in these cases.

8.3.2 More analyses

One obvious direction of future work could be to develop more concrete analyses for
CSL to investigate whether the framework is actually useful for a wide array of analyses.
For instance it would be beneficial to also try to phrase analyses that infer temporal
properties of contracts. All the analyses that we describe are non-temporal, meaning
that the order of events do not matter for the final result. An example of a temporal
property could be: “All obligations of Bob will be completed before Alice can participate
in the contract”.

8.3.3 Verified contract monitoring

One area of possible further investigation is the construction of a verified contract
monitor. With a mechanized sound and complete reduction semantics, it should not
be that complicated to construct a verified implementation of a contract monitoring
system. It would basically be an interpreter for reducing contracts given events that
would be proven to implement one of the reduction semantics.

8.3.4 Verified abstract interpretation of CSL

At the moment we have a prototype interpreter in Haskell that implements the abstract
semantics of CSL. It would be great to have a verified abstract interpreter in Coq that
guarantees that the result of the analysis is sound with respect to the semantics of CSL.
There is one major problem with this. Termination of the abstract interpreter is hard to
prove since it depends of properties of the lattice on which the analysis is performed.
There has been work on data-flow analysis in Coq by Carchere et al. [Cac+05] where
they prove termination of their analyzer using the ascending chain property of the
analysis lattice.

8.3.5 Certification of CSL contracts

For high-risk contracts, it might be beneficial to verify and formally prove that a contract
has certain properties. This approach is pursued in many other new contract languages,
where one uses a program logic to prove properties about concrete contracts instead of
relying on automatic inference of predetermined properties like we do. This is useful to

75

CHAPTER 8. DISCUSSION

prove that a contract conforms to a specification. This direction is motivated by the fact
that a lot of the related work is within the domain of smart contract verification.

76

Bibliography

[And+06] Jesper Andersen, Ebbe Elsborg, Fritz Henglein, Jakob Grue Simonsen, and
Christian Stefansen. “Compositional specification of commercial contracts”.
In: International Journal on Software Tools for Technology Transfer 8.6 (2006),
pp. 485–516. DOI: 10.1007/s10009-006-0010-1.

[AS19] Danil Annenkov and Bas Spitters. “Towards a Smart Contract Verification
Framework in Coq”. In: CoRR abs/1907.10674 (2019). arXiv: 1907.10674.
URL: http://arxiv.org/abs/1907.10674.

[AZW09] Brian Aydemir, Stephan A Zdancewic, and Stephanie Weirich. “Abstracting
syntax”. In: Technical Reports (CIS) (2009), p. 901.

[BBE15] Patrick Bahr, Jost Berthold, and Martin Elsman. “Certified Symbolic Man-
agement of Financial Multi-party Contracts”. In: Proceedings of the 20th ACM
SIGPLAN International Conference on Functional Programming. ICFP 2015. Van-
couver, BC, Canada: ACM, 2015, pp. 315–327. ISBN: 978-1-4503-3669-7. DOI:
10.1145/2784731.2784747. URL: http://doi.acm.org/10.1145/2784731.
2784747.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development. Springer Berlin Heidelberg, 2004. DOI: 10.1007/978-3-662-
07964-5.

[BD09] Ana Bove and Peter Dybjer. “Dependent Types at Work”. In: Language
Engineering and Rigorous Software Development: International LerNet ALFA
Summer School 2008, Piriapolis, Uruguay, February 24 - March 1, 2008, Revised
Tutorial Lectures. Ed. by Ana Bove, Luís Soares Barbosa, Alberto Pardo, and
Jorge Sousa Pinto. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 57–99. ISBN: 978-3-642-03153-3. DOI: 10.1007/978-3-642-03153-3_2.
URL: https://doi.org/10.1007/978-3-642-03153-3_2.

[Ben+11] Nick Benton, Chung-Kil Hur, Andrew J. Kennedy, and Conor McBride.
“Strongly Typed Term Representations in Coq”. In: Journal of Automated
Reasoning 49.2 (2011), pp. 141–159. DOI: 10.1007/s10817-011-9219-0.

[Ber06] Yves Bertot. “Coq in a Hurry”. In: CoRR abs/cs/0603118 (2006). arXiv:
cs/0603118. URL: http://arxiv.org/abs/cs/0603118.

[Bha+16] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha
Gollamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem
Rastogi, Thomas Sibut-Pinote, Nikhil Swamy, and Santiago Zanella-Béguelin.
“Formal Verification of Smart Contracts: Short Paper”. In: Proceedings of the
2016 ACM Workshop on Programming Languages and Analysis for Security.
PLAS ’16. Vienna, Austria: ACM, 2016, pp. 91–96. ISBN: 978-1-4503-4574-

77

https://doi.org/10.1007/s10009-006-0010-1
https://arxiv.org/abs/1907.10674
http://arxiv.org/abs/1907.10674
https://doi.org/10.1145/2784731.2784747
http://doi.acm.org/10.1145/2784731.2784747
http://doi.acm.org/10.1145/2784731.2784747
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-642-03153-3_2
https://doi.org/10.1007/978-3-642-03153-3_2
https://doi.org/10.1007/s10817-011-9219-0
https://arxiv.org/abs/cs/0603118
http://arxiv.org/abs/cs/0603118

CHAPTER 8. DISCUSSION

3. DOI: 10.1145/2993600.2993611. URL: http://doi.acm.org/10.1145/
2993600.2993611.

[BJS15] Martin Bodin, Thomas Jensen, and Alan Schmitt. “Certified Abstract In-
terpretation with Pretty-Big-Step Semantics”. In: Proceedings of the 2015
Conference on Certified Programs and Proofs. CPP ’15. Mumbai, India: ACM,
2015, pp. 29–40. ISBN: 978-1-4503-3296-5. DOI: 10.1145/2676724.2693174.
URL: http://doi.acm.org/10.1145/2676724.2693174.

[Cac+05] David Cachera, Thomas Jensen, David Pichardie, and Vlad Rusu. “Extract-
ing a data flow analyser in constructive logic”. In: Theoretical Computer
Science 342.1 (2005), pp. 56–78. DOI: 10.1016/j.tcs.2005.06.004.

[CC92a] Patrick Cousot and Radhia Cousot. “Abstract interpretation and application
to logic programs”. In: The Journal of Logic Programming 13.2-3 (1992), pp. 103–
179.

[CC92b] Patrick Cousot and Radhia Cousot. “Comparing the Galois Connection and
Widening/Narrowing Approaches to Abstract Interpretation”. In: Proceed-
ings of the 4th International Symposium on Programming Language Implementa-
tion and Logic Programming. PLILP ’92. Berlin, Heidelberg: Springer-Verlag,
1992, pp. 269–295. ISBN: 3-540-55844-6. URL: http://dl.acm.org/citation.
cfm?id=646448.692441.

[CGV18] Krishnendu Chatterjee, Amir Kafshdar Goharshady, and Yaron Velner.
“Quantitative Analysis of Smart Contracts”. In: CoRR abs/1801.03367 (2018).
arXiv: 1801.03367. URL: http://arxiv.org/abs/1801.03367.

[CH78] Patrick Cousot and Nicolas Halbwachs. “Automatic discovery of linear
restraints among variables of a program”. In: Proceedings of the 5th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages - POPL
'78. ACM Press, 1978. DOI: 10.1145/512760.512770.

[Chl14] Adam Chlipala. Certified Programming with Dependent Types - A Pragmatic
Introduction to the Coq Proof Assistant. MIT Press, Feb. 11, 2014. 440 pp. ISBN:
0262026651.

[Dar+17] David Darais, Nicholas Labich, Phúc C. Nguyen, and David Van Horn.
“Abstracting definitional interpreters (functional pearl)”. In: Proceedings of
the ACM on Programming Languages 1.ICFP (2017), pp. 1–25. DOI: 10.1145/
3110256.

[Goo14] LM Goodman. “Tezos—a self-amending crypto-ledger White paper”. In:
(2014).

[Gro+17] Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky, Noam
Rinetzky, Mooly Sagiv, and Yoni Zohar. “Online Detection of Effectively
Callback Free Objects with Applications to Smart Contracts”. In: Proc. ACM
Program. Lang. 2.POPL (Dec. 2017), 48:1–48:28. ISSN: 2475-1421. DOI: 10.
1145/3158136. URL: http://doi.acm.org/10.1145/3158136.

[Hen+09] Fritz Henglein, Ken Friis Larsen, Jakob Grue Simonsen, and Christian Ste-
fansen. “POETS: Process-oriented event-driven transaction systems”. In:
The Journal of Logic and Algebraic Programming 78.5 (2009), pp. 381–401. DOI:
10.1016/j.jlap.2008.08.007.

78

https://doi.org/10.1145/2993600.2993611
http://doi.acm.org/10.1145/2993600.2993611
http://doi.acm.org/10.1145/2993600.2993611
https://doi.org/10.1145/2676724.2693174
http://doi.acm.org/10.1145/2676724.2693174
https://doi.org/10.1016/j.tcs.2005.06.004
http://dl.acm.org/citation.cfm?id=646448.692441
http://dl.acm.org/citation.cfm?id=646448.692441
https://arxiv.org/abs/1801.03367
http://arxiv.org/abs/1801.03367
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/3110256
https://doi.org/10.1145/3110256
https://doi.org/10.1145/3158136
https://doi.org/10.1145/3158136
http://doi.acm.org/10.1145/3158136
https://doi.org/10.1016/j.jlap.2008.08.007

CHAPTER 8. DISCUSSION

[Hil+18] Everett Hildenbrandt, Manasvi Saxena, Xiaoran Zhu, Nishant Rodrigues,
Philip Daian, Dwight Guth, Brandon Moore, Yi Zhang, Daejun Park, An-
drei Ştefănescu, and Grigore Roşu. “KEVM: A Complete Semantics of the
Ethereum Virtual Machine”. In: 2018 IEEE 31st Computer Security Foundations
Symposium. IEEE, 2018, pp. 204–217.

[Hvi10] Tom Hvitved. “A survey of formal languages for contracts”. In: Fourth
workshop on formal languages and analysis of contract–oriented software. Citeseer,
2010.

[Jon01] Simon Peyton Jones. “Composing Contracts: An Adventure in Financial En-
gineering”. In: Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2001, pp. 435–435. DOI: 10.1007/3-540-45251-6_24.

[Jou+15] Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and
David Pichardie. “A Formally-Verified C Static Analyzer”. In: SIGPLAN
Not. 50.1 (Jan. 2015), pp. 247–259. ISSN: 0362-1340. DOI: 10.1145/2775051.
2676966. URL: http://doi.acm.org/10.1145/2775051.2676966.

[Luu+16] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Ho-
bor. “Making Smart Contracts Smarter”. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. CCS ’16. Vi-
enna, Austria: ACM, 2016, pp. 254–269. ISBN: 978-1-4503-4139-4. DOI: 10.
1145/2976749.2978309. URL: http://doi.acm.org/10.1145/2976749.
2978309.

[McC82] William E. McCarthy. “The REA Accounting Model: A Generalized Frame-
work for Accounting Systems in a Shared Data Environment”. In: The Ac-
counting Review 57.3 (1982), pp. 554–578. ISSN: 00014826. URL: http://www.
jstor.org/stable/246878.

[NNH99] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of
Program Analysis. Springer Berlin Heidelberg, 1999. ISBN: 978-3-540-65410-0.
DOI: 10.1007/978-3-662-03811-6.

[Sch95] David A. Schmidt. “Natural-semantics-based abstract interpretation (pre-
liminary version)”. In: Static Analysis. Springer Berlin Heidelberg, 1995,
pp. 1–18. DOI: 10.1007/3-540-60360-3_28.

[SKH18] Ilya Sergey, Amrit Kumar, and Aquinas Hobor. “Scilla: a Smart Contract
Intermediate-Level LAnguage”. In: CoRR abs/1801.00687 (2018). arXiv:
1801.00687. URL: http://arxiv.org/abs/1801.00687.

79

https://doi.org/10.1007/3-540-45251-6_24
https://doi.org/10.1145/2775051.2676966
https://doi.org/10.1145/2775051.2676966
http://doi.acm.org/10.1145/2775051.2676966
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/2976749.2978309
http://doi.acm.org/10.1145/2976749.2978309
http://doi.acm.org/10.1145/2976749.2978309
http://www.jstor.org/stable/246878
http://www.jstor.org/stable/246878
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/3-540-60360-3_28
https://arxiv.org/abs/1801.00687
http://arxiv.org/abs/1801.00687

Appendix A

Overview of the source code

Here we will briefly give an overview of the included source code.
First we describe the mechanization in Coq in the directory csl-formalization. The

proofs are checked with version 8.9.1 of the Coq proof assistant on Linux. To check
all the proofs, run make in the CSL folder. To interactively step through the proofs, we
recommend Proof General1, which is an interface for Coq based on the Emacs text editor.

A.1 The basic mechanization

The first couple of files are used to mechanize the semantics of CSL and proof properties
of the semantics.

A.1.1 CSL/HList.tex

In this file we have the implementation of the HList that we use for environments.

A.1.2 CSL/Definitions.tex

In this file we have the definitions for domains, events and traces.

A.1.3 CSL/Exp.tex

This file includes the syntax for expressions and an interpreter for expressions. Futher-
more it includes auxillary definitions for substitutions in expressions.

A.1.4 CSL/Syntax.tex

This file includes the syntax of CSL and auxillary definitions for substitutions in con-
tracts.

A.1.5 CSL/Satisfaction.tex

This file includes definitions for interleave and append relations and the trace satisfac-
tion semantics of CSL.

1https://proofgeneral.github.io/

80

https://proofgeneral.github.io/

APPENDIX A. OVERVIEW OF THE SOURCE CODE

A.1.6 CSL/Tactics

This file includes some tactics that are used in the proofs for the definitional interpreter
and substitution.

A.1.7 CSL/Denotational.tex

This file includes functions that calculate interleavings and appendings and proofs of
their correctness with respect to the relations used in the trace satisfaction semantics.
It also includes the definitional interpreter for CSL and the proof of equivalence to the
trace satisfaction semantics.

A.1.8 CSL/Subst.tex

This file includes the proof that substitution commutes with respect to both semantics.

A.1.9 CSL/Guarded.tex

This file includes both definitions for nullability and guardedness. It also includes
proofs about the equivalence of semantic and syntactic nullability and that guardedness
for template environments imply guardedness for all contracts.

A.1.10 CSL/Residuation.tex

This file includes the delayed matching and the eager matching semantics. It also
includes soundness and completeness proofs for them. It also includes the definition of
the control semantics from the paper, but without completed proofs.

A.1.11 CSL/Examples.tex

This file includes some example derivations of satisfying traces for contracts.

A.2 Verification of the analysis

The next couple of files include definitions we need for the analysis of CSL

A.2.1 CSL/Analysis/Lattice.tex

This file includes the type class definitions for lattices and the inferred instance for
function lattices.

A.2.2 CSL/Analysis/AbstractValues.tex

This file includes data types for abstract values and abstract sets. These are used to give
type class instances for abstract sets.

A.2.3 CSL/Analysis/Interval.tex

This file includes the implementation of the interval abstract domain along with a type
class instance for lattices. It also includes a wide array of helpful lemmas about intervals
that are used for proving the fairness analysis correct.

81

APPENDIX A. OVERVIEW OF THE SOURCE CODE

A.2.4 CSL/Analysis/Generic.tex

This file includes type class instances for both the predicate analysis and the CSL
analysis. It also includes specifications of the inductive and co-inductive interpretation
of the abstract collecting semantics for CSL. Finally it includes the soundness proofs for
the abstract collecting semantics given the type class instances for both the CSL analysis
and predicate analysis.

A.2.5 CSL/Analysis/IdPredicateAnalysis.tex

This file includes the trivial predicate analysis that does no refinement and proofs that it
is correct.

A.2.6 CSL/Analysis/Algorithms.tex

This file includes an attempt at implementing an algorithm for predicate analysis that
does unification. Proofs of its correctness is almost complete.

A.2.7 CSL/Analysis/Participation.tex

This file includes definitions of the abstract domain and representation function for
participation analysis. It also includes the important proofs for the correctness of the
combinators.

A.2.8 CSL/Analysis/ParticipationGeneric.tex

This file includes the type class instance for the participation analysis that proves that it
is correct. It also includes the lattice instance for the abstract domain of the analysis.

A.2.9 CSL/Analysis/Fairness.tex

This file includes definitions of the abstract domain and representation function for fair-
ness analysis. It also includes the important proofs for the correctness of the combinators.
Finally it includes an incomplete proof of monotonicity of the transfer combinator.

A.2.10 CSL/Analysis/FairnessGeneric.tex

This file includes the type class instance for the fairness analysis that proves that it is
correct.

A.3 Prototype implementation

We have also included the prototype implementation of an abstract interpreter for CSL.
It is included in the csl-impl directory. It requires stack2 for compiling and running.

When run, the program will analyze a few example contracts from the Examples.hs
file.

2https://docs.haskellstack.org/en/stable/README/

82

https://docs.haskellstack.org/en/stable/README/

Appendix B

Additional background

B.1 Lattices

We will in this section describe lattices, and the subset of lattice theory that we will use
for the thesis.

Definition B.1 (Lattice). A lattice is a set L equipped with a partial order (v) written (L,v).
Furthermore we require that every pair (a, b) of elements has both a least upper bound and a
greatest lower bound. We write a t b for the least upper bound of two elements and a u b for the
greatest lower bound of two elements. These are also called join and meet respectively.

Definition B.2 (Complete lattice). A complete lattice is a lattice where every subset S ⊆ L
has a least upper bound (written

⊔
S) and a greatest lower bound (uS). We write (L,v,

⊔
,u)

for a complete lattice. We write > =
⊔
L and ⊥ =

d
L for the greatest and smallest element of

the complete lattice respectively.

A widely used complete lattice in abstract interpretation in the powerset lattice.

Example B.1. The powerset lattice (P(A),⊆,
⋃
,
⋂

) is a complete lattice on any set where ⊆ is
ordinary set inclusion. We note that every subset S ⊆ P(A) has a least upper bound

⋃
S and a

greatest lower bound
⋂
S. We also note that > = P(A) and ⊥ = ∅.

Note also that (P(A),⊇,
⋂
,
⋃

) is a complete lattice.

Another complete lattice that is often used in analyses is the complete lattice on total
functions. This lattice is used to model things like abstract values stored in variables.

Example B.2. Let (L′,v′,
⊔′,d′) be a complete lattice and let S be any set, now (S → L′,v

,
⊔
,
d

) is also a complete lattice where

f v g ⇐⇒ ∀s ∈ S.f(s) v′ g(s)

(
⊔
X)(s) =

⊔
′{f(s) | f ∈ X}

(
l
X)(s) =

l
′{f(s) | f ∈ X}

Note that ⊥(s) = ⊥′ and >(s) = >′.

We will also quickly describe the complete lattice that we will use in fairness analysis
to bound gains and losses of a contract. It will be the intervals on the real number line.

83

APPENDIX B. ADDITIONAL BACKGROUND

Example B.3 (Intervals).

IR = {⊥} ∪ {[x1, x2] | x1 ≤ x2, x1 ∈ R ∪ {−∞}, x2 ∈ R ∪ {∞}}

where the ordering is extended such that −∞ < x and x < ∞ for all x ∈ R. i1 v i2 will be
true iff any number in i1 is also in i2. (IR,v,t,u) is a complete lattice where t joins intervals
and u intersects intervals.

B.1.1 Ascending chains on lattices

For a lattice (L,v), a sequence (`n)n of elements is an ascending chain if

n ≤ m⇒ `n v `m
We say that the chain (`n)n eventually stabilizes if and only if

∃n0.∀n.n ≥ n0 ⇒ `n = `n0 .

Now we can define the Ascending Chain Condition. We say that a complete lattice
(L,v) has the Ascending Chain Condition if and only if all ascending chains eventually
stabilize.

B.1.2 Fixed points on complete lattices

We are going to compute fixed points of complete lattices, and to compute fixed points
we are going to use monotone functions:

Definition B.3 (Monotonicity). f is monotone if

l1 v l2 ⇒ f(l1) v f(l2)

If we have a monotone f : L→ L on a complete lattice (L,v), then a fixed point of f is
an element l ∈ L such that f(l) = l. We write Fix(f) = {l | f(l) = l} for the set of fixed
points of f on l. The least fixed point of f is the smallest of such fixed points.

lfp(f) =
l

Fix(f)

And the greatest fixed point of f is the largest of such fixed points.

gfp(f) =
⊔

Fix(f)

The Knaster Tarski shows the existence of fixed points on complete lattices:

Theorem B.1 (Knaster-Tarski Theorem for fixed points). Let (L,v) be a complete lattice
and f : L→ L be a monotone function. Define

m =
l
{x ∈ L | f(x) v x}

and
m′ =

⊔
{x ∈ L | x v f(x)}.

Now m is the least fixed point of f and m′ is the greatest fixed point of f .

Now one can show that

fn(⊥) v
⊔
n

fn(⊥) v lfp(f) v gfp(f) v
l

n

fn(>) v fn(>).

If now L satisfies the Ascending Chain Condition, then one can also show that there
exists n such that fn(⊥) = fn+1(⊥) = lfp(f). This will be useful for finding the solution
to analyses of programs.

84

APPENDIX B. ADDITIONAL BACKGROUND

B.2 Lattices in Coq

For the abstract domain of traces, we are going to define a type class for lattices that we
will use for all our analyses. It will not be a complete lattice, since we are not going to
use u, hence we formalize a complete upper semilattice.
Class Lattice (L : Type) :=
{
top : L; bot : L;
Incl : L → L → Prop;
Incl_bot : ∀ (x : L), Incl bot x;
Incl_top : ∀ (x : L), Incl x top;
Incl_refl : ∀ (x : L), Incl x x;
Incl_trans : ∀ (x y z : L), Incl x y → Incl y z → Incl x z;
join : L → L → L;
join_correct : ∀ (x y : L), Incl x (join x y) ∧ Incl y (join x y);
join_monotone : ∀ (x x’ y y’ : L), Incl x x’ → Incl y y’ → Incl (join x y) (join x’ y’)

}.

For the abstract domain that we are going to use for the environment, we are going to
subclass the lattice into a set-like lattice that has the possibility of lifting a single value
into the lattice.
Class SetLattice (A : ty → Type) ‘{L : ∀ t : ty, Lattice (A t)} :=
{
In {t} : tyDenote t → A t → Prop;
lift {t} : tyDenote t → A t;
InIncl : ∀ t (v : tyDenote t) l, In v l ↔ Incl (lift v) l

}.

This definition encodes the α function implicitly, so any value has a representation
in the lattice automatically. The typeclass constraint for L requires us to give a lattice
instance for all the return types of A. For instance we can define different abstractions
for different types:
Definition good_env_denote (t : ty) :=
match t with
| Resource ⇒ interval
| Timestamp ⇒ interval
| _ ⇒ power_set
end.

then @SetLattice good_env_denote _ will make a set like lattice for the environment that
has, say resource variables mapped to intervals and agent variables mapped to power
sets. We will later use this to make the abstract environment defined as part of the
predicate analysis.

This is a nice example of programming with dependent types in Coq that makes it
possible to flexible definitions that can capture a wide array of use cases.

B.2.1 Instances

We will now describe the different lattice instances, and what they will be used for.

Functions

To model maps for use in the fairness analys we have made a lattice instance for total
functions. The function lattice has a very nice definition in Coq using type classes where
we only require the codomain to be a lattice.

85

APPENDIX B. ADDITIONAL BACKGROUND

Instance fun_lattice {A B} ‘(LB : Lattice B) : Lattice (A → B) :=
{
top := fun _ ⇒ top;
bot := fun _ ⇒ bot;
Incl x y := ∀ a, Incl (x a) (y a);
join x y := λ a ⇒ join (x a) (y a)

}.

Power set

There is a pretty large design space for encoding sets in Coq. To encode power sets we
have chosen to lift finite sets by including an abstraction of the full set >. Actual sets
will be sets of values of the base type τ , tyDenote τ .

Inductive abstract_set t : Type :=
| FullSet : abstract_set t
| ActualSet : set (tyDenote t) → abstract_set t.

We can then make a lattice and set like instance for it.

Instance abstract_set_lattice t : Lattice (abstract_set t) :=
{
top := FullSet;
bot := ActualSet (empty_set (tyDenote t));
Incl x y := abstract_set_Incl x y;
join x y := union_abstract_set x y

}.
Instance abstract_set_setlattice : SetLattice abstract_set :=
{
In := abstract_set_In;
lift {t} v := ActualSet (singleton (tyDenote_dec_eq t) v)

}.

Intervals

We have described the implementation of intervals in Section 3.3. The lattice instance
just uses the defintions from this library:

Instance interval_Lattice : Lattice interval :=
{
top := FullInterval;
bot := EmptyInterval;
Incl := Incl_interval;
join := join_interval;

}.
(* Proofs of correctness *)

Defined.

86

	Introduction
	Motivation
	Contributions
	Roadmap

	A Compositional Contract Language
	Syntax
	Typing
	Contract satisfaction
	Denotational semantics
	Reduction semantics
	Resources and agents

	Proofs and programs
	Propositions as types
	The Coq proof assistant
	An interval abstraction

	Mechanization of CSL in Coq
	Bindings
	Expressions
	Syntax
	Contract satisfaction
	Denotational semantics
	Substitution
	Residuation

	Abstract interpretation
	Collecting semantics
	Galois connections
	Fixed point algorithms

	Contract analysis
	Abstract interpretation of CSL
	Analysis of expressions
	A collecting semantics for CSL
	An abstract interpreter
	A general framework for contract analyses
	Participation analysis
	Fairness analysis

	Contract analyses in Coq
	Generic analysis
	Analysis instances

	Discussion
	Conclusion
	Related work
	Future work

	Bibliography
	Overview of the source code
	The basic mechanization
	Verification of the analysis
	Prototype implementation

	Additional background
	Lattices
	Lattices in Coq

